Decision making under uncertainty

Matthijs Spaan¹ and Frans Oliehoek²

¹ Delft University of Technology ² Maastricht University

Part 3: Multiagent Frameworks

14th European Agent Systems Summer School (EASSS '12) Valencia, Spain

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

EASSS – Spaan & Oliehoek

Multiagent Systems (MASs)

Why MASs?

- If we can make intelligent agents, soon there will be many...
- Physically distributed systems: centralized solutions expensive and brittle.
- can potentially provide [Vlassis, 2007, Sycara, 1998]
 - Speedup and efficiency
 - Robustness and reliability ('graceful degradation')
 - Scalability and flexibility (adding additional agents)

- Predator-Prey domain still single agent!
 - 1 agent: the predator (blue)
 - prey (red) is part of the environment
 - on a torus ('wrap around world')
- Formalization:
 - states
 - actions
 - transitions
 - rewards

- Predator-Prey domain
 - 1 agent: the predator (blue)
 - prey (red) is part of the environment
 - on a torus ('wrap around world')
- Formalization:
 - states (-3,4)
 - actions
 N,W,S,E
 - transitions
 - rewards

probability of failing to move, prey moves reward for capturing

Predator-Prey domain

Markov	decision process (MDP)					
		to move,	orey	move	es	
rewards	reward for capturn	η				

Predator-Prey domain

Markov decision process (MDP)

- Markovian state s...
- ...which is observed
- policy π maps states \rightarrow actions
- Value function Q(s,a)

rewarus

• Value iteration: way to compute it.

orey moves

reward for capturing

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = 'nothing '

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = (-1, 1)

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = (-1, 1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

- Now: partial observability
 - Partially Observable MDP (POMDP)
 - NDP + observations
 explicit observations
 observation probabilities
 - detection probability

o=(-1,1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

Now: partial observability

Partially Observable MDP (POMDP)

- reduction → continuous state MDP
- (in which the belief **is** the state)
 - Value iterations:
 - make use of α-vectors (correspond to complete policies)
 - perform pruning: eliminate dominated α 's

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$ o = (-1, 1)

- Now: multiple agents
 - fully observable

- Formalization:
 - states
 - actions
 - joint actions
 - transitions
 - rewards

- Now: multiple agents
 - fully observable

- Formalization:
 - states
 - actions
 - joint actions
 - transitions
 - rewards

- ((3,-4), (1,1), (-2,0))
- $\{N,W,S,E\}$
- {(N,N,N), (N,N,W),...,(E,E,E)}

probability of failing to move, prey moves reward for capturing jointly

Now: multiple agents

Multiagent MDP [Boutilier 1996]

- Differences with MDP
 - *n* agents

 - joint actions $a = \langle a_1, a_2, \dots, a_n \rangle$ transitions and rewards depend on joint actions

• Solution:

- Treat as normal MDP with 1 'puppeteer agent'
 - Optimal policy $\pi(s) = a$
 - Every agent executes its part

rewards reward for capturing jointly

Fo

es

Now: multiple agents

Now: multiple agents

Catch: number of joint actions is exponential! (but other than that, conceptually simple.)

- Differences with MDP
 - *n* agents

Multiage

- joint actions $a = \langle a_1, a_2, ..., a_n \rangle$ transitions and rewards depend on joint actions
- Solution:
 - Treat as normal MDP with 1 'puppeteer agent'
 - Optimal policy $\pi(s) = a$
 - Every agent executes its part

rewards reward for capturing jointly

Fo

es

Multiple Agents & Partial Observability

- Now: Both
 - partial observability
 - multiple agents

Multiple Agents & Partial Observability

- Now: Both
 - partial observability
 - multiple agents
- Decentralized POMDPs (Dec-POMDPs) [Bernstein et al. 2002]

- both
 - joint actions and
 - joint observations

Multiple Agents & Partial Observability

Again we can make a reduction...

any idea?

Multiple Agents & Partial Observability

- Again we can make a reduction...
 Dec-POMDPs → MPOMDP
 (multiagent POMDP)
- 'puppeteer' agent that
 - receives joint observations
 - takes joint actions
- requires broadcasting observations!
 - instantaneous, cost-free, noise-free communication → optimal [Pynadath and Tambe 2002]
- Without such communication: no easy reduction.

The Dec-POMDP Model

Acting Based On Local Observations

- MPOMDP: Act on global information
- Can be impractical:
 - communication not possible
 - significant cost (e.g battery power)
 - not instantaneous or noise free
 - scales poorly with number of agents!

- Alternative: act based only on local observations
 - Other side of the spectrum: no communication at all
 - (Also other intermediate approaches: delayed communication, stochastic delays)

Formal Model

- A Dec-POMDP
 - $\langle S, A, P_T, O, P_O, R, h \rangle$
 - n agents
 - S set of states
 - A set of joint actions
 - P_{τ} transition function
 - *O* set of **joint** observations
 - P_o observation function
 - R reward function
 - *h* horizon (finite)

$$a = \langle a_{1,} a_{2,} \dots, a_{n} \rangle$$
$$P(s'|s,a)$$

$$o = \langle o_1, o_2, \dots, o_n \rangle$$
$$P(o|a, s')$$
$$R(s, a)$$

2 generals problem

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

Transitions

- Both Observe: no state change
- At least 1 Attack: reset with 50% probability

Observations

- Probability of correct observation: 0.85
- E.g., P(<L, L> | s_L) = 0.85 * 0.85 = 0.7225

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

Rewards

- 1 general attacks: he loses the battle
 - R(*, <A, O>) = -10
- Both generals Observe: small cost
 R(*,<0,O>) = -1
- Both Attack: depends on state
 - R(s, <A,A>) = -20
 - R(s_R,<A,A>) = +5

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

suppose h=3, what do you think is optimal in this problem?

Rewards

- 1 general attacks: he loses the battle
 - R(*, < A, O >) = -10
- Both generals Observe: small cost
 R(*,<0,O>) = -1
- Both Attack: depends on state
 - R(s, <A,A>) = -20
 - R(s_R,<A,A>) = +5

Off-line / On-line phases

off-line planning, on-line execution is decentralized

Policy Domain

- What do policies look like?
 - In general histories \rightarrow actions
 - before: more compact representations...
- Now, this is difficult: no such representation known!
 - \rightarrow So we will be stuck with histories

Policy Domain

- What do policies look like?
 - In general histories \rightarrow actions
 - before: more compact representations...
- Now, this is difficult: no such representation known!
 - \rightarrow So we will be stuck with histories

Most general, AOHs:
$$(a^{0}, o^{1}, a^{1}, a^{t-1}, o^{t})$$

But: can restrict to deterministic policies → only need OHs:

$$\vec{o}_i = (o_i^{1, \dots, o_i^t})$$

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem:

?

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem: agents do not know those during execution

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem: agents do not know those during execution
- Multiagent belief, $b_i(s,q_{-i})$ [Hansen et al. 2004]
 - belief over (future) policies of other agents
 - Need to be able to predict the other agents!
 - for belief update $P(s'|s,a_i,a_i)$, $P(o|a_i,a_i,s')$, and prediction of $R(s,a_i,a_i)$
 - form of those other policies? most general: $\pi_i: \vec{o}_i \rightarrow a_i$
 - If they use beliefs? → infinite recursion of beliefs!

Goal of Planning

- Find the optimal joint policy $\pi^* = \langle \pi_1, \pi_2 \rangle$
 - where individual policies map OHs to actions $\pi_i: \vec{O}_i \rightarrow A_i$
- What is the optimal one?
 - Define value as the expected sum of rewards:

$$V(\pi) = \boldsymbol{E}\left[\sum_{t=0}^{h-1} R(s,a) \mid \pi, b^0\right]$$

 optimal joint policy is one with maximal value (can be more that achieve this)

Goal of Planning

Goal of Planning

Coordination vs. Exploitation of Local Information

Inherent trade-off

coordination vs. exploitation of local information

- Ignore own observations → 'open loop plan'
 - E.g., "ATTACK on 2nd time step"
 - + maximally predictable
 - low quality
- Ignore coordination
 - E.g., compute an individual belief b_i(s) and execute the MPOMDP policy
 + uses local information
 - likely to result in mis-coordination
- Optimal policy π^* should balance between these.

 $b_i(s) = \sum_{q_{-i}} b(s, q_{-i})$

Planning Methods

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
 - using a Bellman-like equation [Oliehoek 2012]
- So the **stupidest algorithm** is:
 - compute $V(\pi)$, for all π
 - select a π with maximum value
- Number of joint policies is huge! (doubly exponential in horizon h)
- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2.8948e+76
8	3.3520e+153

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
 - using a Bellman-like equation [Oliehoek 2012]

No easy way out...

The problem is **NEXP-complete** [Bernstein et al. 2002]

most likely (assuming EXP != NEXP) doubly exponential time required.

(uoubly exponential in nonzon n)

Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2.8948e+76
8	3.3520e+153

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
 - using a Bellman-like equation [Oliehoek 2012]

No	easy	way	out
----	------	-----	-----

The problem is **NEXP-complete** [Bernstein et al. 2002]

most likely (assuming EXP != NEXP) doubly exponential time required. hnum. joint policies1426431638441.0737e+0954.6117e+1868.5071e+3772.8948e+76

(doubly exponential in nonzon n)

- Clearly intracta
- Still, there are better algorithms that work better for at least some problems...
 - Useful to understand what optimal really means! (trying to compute it helps understanding)

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{τ=1}
 - construct all 2-stages-to-go policies $Q^{\tau=2}$, etc.

- Generate all policies in a special way:
 - from 1 stage-to-go policies $Q^{\tau=1}$

- Generate all policies in a special way:
 - from 1 stage-to-go policies $Q^{\tau=1}$

- Generate all policies in a special way:
 - from 1 stage-to-go policies $Q^{\tau=1}$

- Generate all policies in a special way:
 - from 1 stage-to-go policies $Q^{\tau=1}$

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{τ=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies $Q^{\tau=1}$

(obviously) this scales very poorly...

(obviously) this scales very poorly...

(obviously) this scales very poorly...

$Q_1^{\tau=3}$

ፊኤ ፊኤ

$Q_2^{\tau=3}$

(obviously) this scales very poorly...

$Q_1^{ au=3}$	$Q_2^{ au=3}$		
ቆ፟፟፟፟ አቆ፝፟፝ አቆ፝ አቆ፝ አቆ	ቆ፟፟፟፟፟፟፟ አ፟፟፟ አ፟፟ አ፟ አ አ አ አ አ አ አ አ አ አ		
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$	_ && && && && & h	num. indiv. policies	
	68 68 1	2	
	2	8	
I his does not get us anywher	e!	128	
	- 4	32768	
	- 163 163 <mark>168 168 5</mark>	2.1475e+09	
6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.2234e+18	
ቆቆ ቆ፟፟፟ ቆ፟ ቆቆ	ቆሕ ቆሕ ቆሕ ቆሕ 7	1.7014e+38	
ቆ፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟፟፟፟ አ፟፟፝ ቆ፟፟፟፟፟ አ፟ ቆ፟፟፝ ቆ፟፟ ቆ፟፟ ቆ፟፟ ቆ፟፟ ቆ፟ ቆ፟ ቆ፟ ቆ፟ ቆ፟ ቆ	ቆଛ ቆଛ ቆଛ ቆଛ 8	5.7896e+76	
ቆ፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟	ቆ፟፟፟ እ ቆ፟ እ ቆ፟ እ ቆ፟ እ ቆ፟ እ ቆ፟ እ ቆ	ል ቆ፟ል ቆ፟ል	

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

$$Q_i^{\tau=1} = A_i$$

```
Initialize Q1(1), Q2(1)
for tau=2 to h
    Q1(tau) = ExhaustiveBackup(Q1(tau-1))
    Q2(tau) = ExhaustiveBackup(Q2(tau-1))
    Prune(Q1,Q2,tau)
end
```

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

Initialize Q1(1), Q2(1)
for tau=2 to h
Q1(tau) = ExhaustiveBackup(Q1(tau-1))
Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2,tau)
end
Note: cannot prune independently!
• usefulness of a
$$q_1$$
 depends on Q_2
• and vice versa
 \rightarrow Iterated elimination of policies

 $Q_i^{\tau=1} = A_i$

Initialization

Exhaustive Backups gives

Pruning agent 1...

Hypothetical Pruning (not the result of actual pruning)

Pruning agent 2...

Pruning agent 1...

Exhaustive backups:

$Q_1^{\tau=3}$

ፈዬ ፈኤ

We avoid generation of many policies!

 $Q_2^{\tau=3}$ *** ፈዬ

Exhaustive backups:

 $Q_{1}^{\tau=3}$ $Q_{2}^{\tau=3}$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ **ፈි**ኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ

Pruning agent 1...

 $Q_1^{\tau=3}$ $Q_{2}^{\tau=3}$ ቆ፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟ ቆ፟፟፟ ፟፟ ቆ፟፟፟ ፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ £\$\$ £\$\$£\$\$ £\$\$ £\$\$ **&**& & & <u>ፈን</u> ዲዮ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ **&**& **&**& && & & & & **ፈි**ኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ

Pruning agent 2...

Bottom-up vs. Top-down

- DP constructs bottom-up
- Alternatively try and construct top down
 - → leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]

Heuristic Search – Intro

- Core idea is the same as DP:
 - incrementally construct all (joint) policies
 - try to avoid work
- Differences
 - different starting point and increments
 - use heuristics (rather than pruning) to avoid work

Heuristic Search – 1

- Incrementally construct all (joint) policies
 - 'forward in time'

Heuristic Search – 1

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

1 complete joint policy

(full-length)

Creating ALL joint policies → tree structure!

Root node: unspecified joint policy

Creating ALL joint policies → tree structure!

need to assign action to 8 OHs now: 2^8 = 256 children (for each node at level 2!)

t=2

- too big to create completely...
- Idea: use heuristics
 - avoid going down non-promising branches!

Apply A* → Multiagent A* [Szer et al. 2005]

NAN 0000

F-Value of a node n

- F(n) is a optimistic estimate
- I.e., $F(n) \ge V(n')$ for any descendant n' of n
- F(n) = G(n) + H(n)

reward up to n (for first *t* stages) Optimistic estimate of reward below n (reward for stages t,t+1,...,h-1)

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel&Norvig 2003]

too big to create

Idea:

Apply

avo

nor

Main intuitior

Further Developments

- DP
 - Improvements to exhaustive backup [Amato et al. 2009]
 - Compression of values (LPC) [Boularias & Chaib-draa 2008]
 - (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]
 - Improvements to PB backup [Seuken & Zilberstein 2007b, Carlin and Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

Heuristic Search

- No backtracking: just most promising path [Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]
- Clustering of histories: reduce number of child nodes [Oliehoek et al. 2009]
- Incremental expansion: avoid expanding all child nodes [Spaan et al. 2011]
- MILP [Aras and Dutech 2010]

State of The Art

To get an impression...

- Optimal solutions
 - Improvements of MAA* lead to significant increases
 - but problem dependent

h	MILP	LPC	GMAA-ICE*			
4	72	534.9	0.04			
6		-	46.43*			
dec-tiger – runtime (s)						

h	MILP	LPC	GMAA-ICE*
5	25	_	<0.01
500	_	_	0.94*

broadcast channel runtime (s) * excluding heuristic

- Approximate (no quality guarantees)
 - MBDP: linear in horizon [Seuken & zilberstein 2007a]
 - Rollout sampling extension: up to 20 agents [Wu et al. 2010b]
 - Transfer planning: use smaller problems to solve large (structured) problems (up to 1000) agents [Oliehoek 2010]

Related Areas

- Partially observable stochastic games [Hansen et al. 2004]
 - Non-identical payoff
- Interactive POMDPs [Gmytrasiewicz & Doshi 2005, JAIR]
 - Subjective view of MAS
- Imperfect information extensive form games
 - Represented by game tree
 - E.g., poker [Sandholm 2010, AI Magazine]

Decision making under uncertainty

Matthijs Spaan¹ and Frans Oliehoek²

¹ Delft University of Technology ² Maastricht University

Part 4: Selected Further Topics

14th European Agent Systems Summer School (EASSS '12) Valencia, Spain

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

EASSS – Spaan & Oliehoek

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
 - Single Agent
 - Multiple agents
- Goal: present an overview of some high-level ideas

On-line Planning

- So far: planning in a separate off-line phase
- However: could also consider performing the planning during execution!
 - do not plan over entire space, but only those reachable in the (near) future!
 - but: need to plan at every step.
- In control theory 'receding horizon control' or 'model predictive control' (but details different)

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over this tree

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over this tree

This focuses computation on states that are reachable (in the near-future)

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over th -> tree is huge...

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over th Expanding all possible next states

→ tree is huge...

- one idea: Sample!
- That works pretty good: bound independent of number of states [Kearns et al. 2002 ML]

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over th Expanding all possible next states

→ tree is huge...

 one idea: Sample!
That works pretty good: bound independent of number of states [Kearns et al. 2002 ML]

Still very big...

- Further idea: avoid expanding non-promising branches.
- Use upper confidence bounds
- UCT [Kocsis & Szepesvári, 2006 ECML]

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
 - Single Agent
 - Multiple agents

Communication

- Already discussed: instantaneous cost-free and noise-free communication
 - Dec-MDP → multiagent MDP (MMDP)
 - Dec-POMDP → multiagent POMDP (MPOMDP)
- but in practice:
 - probability of failure
 - delays
 - costs
- Also: implicit communication! (via observations and actions)

Implicit Communication

Encode communications by actions and observations

• Embed the **optimal meaning** of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

Encode communications by actions and observations

• Embed the **optimal meaning** of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
- E.g. communication bit
 - doubles the #actions and observations!
 - Clearly, useful... but intractable for general settings (perhaps for analysis of very small communication systems)

EASSS '12 -- Spaan & OliehoekEASSS -

Explicit Communication

- perform a particular information update (e.g., sync) as in the MPOMDP:
 - each agent broadcasts its information, and
 - each agent uses that to perform joint belief update
- Other approaches:
 - Communication cost [Becker et al. 2005]
 - Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]
 - communicate every k stages [Goldman & Zilberstein 2008]

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
 - Single Agent
 - Multiple agents

Factored MDPs

- So far: used 'states'
- But in many problems states are factored
 - state is an assignment of variables $s = \langle f_1, f_2, \dots, f_k \rangle$
 - *factored MDP* [Boutilier et al. 99 JAIR]

Examples:

- Predator-prey: x, y coordinate!
- Robotic P.A.

- location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee request, robot holds coffee, mail present, robot holds mail, etc.
- Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail

Factored States & Transitions

Solving Factored MDPs

CPT also representable as a decision tree

Solving Factored MDPs

CPT also representable as a decision tree

Solving Factored MDPs

CPT also representable as a decision tree

Factored POMDPs

- Of course POMDP models can also be factored
- Similar ideas applied [Hansen & Feng 2000, Poupart 2005, Shani et al. 2008]
 - α-vectors represented by ADDs
 - beliefs too.
- This does not solve all problems:
 - over time state factors get more and more correlated, so representation grows large.

Factored Multiagent Models

- Of course multiagent models can also be factored!
- Work can be categorized in a few directions:
 - Trying to execute the factored (PO)MDP policy [Roth et al. 2007, Messias et al. 2011]
 - Trying to execute independently as much as possible
 [Spaan & Melo 2008, Melo & Veloso 2011]
 - Exploiting graphical structure between agents (ND-POMDPs, Factored Dec-POMDPs)
 - Influence-based abstraction of policies of other agents (TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)

- Exploit (conditional) independence between agents
 - E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]

- Exploit (conditional) These problems have
 - E.g., sensor networ
- State that cannot be influenced • Factored reward function $R(s,a) = \sum R_e(s,a_e)$

- Exploit (conditional) These problems have
 - E.g., sensor networ
- State that cannot be influenced • Factored reward function $R(s,a) = \sum R_e(s,a_e)$

This allows a reformulation as a (D)COP

 π_2

 π_{A}

 π_{r}

 π_{2}

 π_{6}

 π_1

 π_7

 $V(\pi) = \sum V_e(\pi_e)$

Can't we use the previous methods (reduction to DCOP) directly... • Why ?

Can't we use the previous methods (reduction to DCOP) directly...

• Why ?

→ dependence propagates!

- Try to define agents' local state
- Analyze how policies of other agents affect it
 - find compact description for this influence
- Example: Mars Rovers [Becker et al. 2004 JAIR]

Transitions **independent**: Rovers drive independently Rewards are **dependent**:

- 2 same soil samples of same site not so useful (sub additive)
- 2 pictures of (different sides) of same rock is useful (super additive)
- Example: Mars Rovers [Becker et al. 2004 JAIR]

- TI Dec-MDP
- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E = \langle e_1, e_2 \rangle$
- From agent i's perspective:
 if it realizes e_i

 \rightarrow extra reward with probability $P(e_i)$

- TI Dec-MDP
- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E = \langle e_1, e_2 \rangle$

Much further research, e.g.:

- Event-driven Dec-MDPs [Becker et al.04 AAMAS]
- Transition-decoupled POMDPs [Witwicki 2011 PhD]
- EDI-CR [Mostafa & Lesser 2009 WIIAT]
- IBA for Factored POSGS [Oliehoek et al. 2012 AAAI]

References

- References can be found on the tutorial website: www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/
- Further references can be found in

Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo, Martijn, editors, *Reinforcement Learning: State of the Art*, Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin Heidelberg, Berlin, Germany, 2012.

Available from http://people.csail.mit.edu/fao/