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Multiagent Systems (MASs)

Why MASs?
 If we can make intelligent agents, soon there will be 

many...
 Physically distributed systems: centralized solutions 

expensive and brittle.
 can potentially provide [Vlassis, 2007,Sycara, 1998]

 Speedup and efficiency
 Robustness and reliability (‘graceful degradation’)
 Scalability and flexibility (adding additional agents)
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Example: Predator-Prey Domain

 Predator-Prey domain – still single agent!
 1 agent: the predator (blue)
 prey (red) is part of the 

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing

??
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Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=' nothing '
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Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations: 
● make use of α-vectors

(correspond to complete policies)
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Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing jointly

??
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● Differences with MDP
● n agents
● joint actions
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● Treat as normal MDP with 1 'puppeteer agent'
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● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)
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Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents
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Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

 Decentralized POMDPs
(Dec-POMDPs) [Bernstein et al. 2002]

 both 
 joint actions and 
 joint observations
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Multiple Agents &
Partial Observability

 Again we can make a reduction...

any idea?
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Multiple Agents &
Partial Observability

 Again we can make a reduction...

Dec-POMDPs → MPOMDP

(multiagent POMDP)

 'puppeteer' agent that 
 receives joint observations

 takes joint actions

 requires broadcasting observations!
 instantaneous, cost-free, noise-free communication → optimal

[Pynadath and Tambe 2002]

 Without such communication: no easy reduction.
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The Dec-POMDP Model
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Acting Based On Local 
Observations

 MPOMDP: Act on global information 
 Can be impractical:

 communication not possible
 significant cost (e.g battery power)

 not instantaneous or noise free
 scales poorly with number of agents!

 Alternative: act based only on local observations
 Other side of the spectrum: no communication at all
 (Also other intermediate approaches: delayed communication, 

stochastic delays)
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Formal Model                      

 A Dec-POMDP 


 n  agents
 S  – set of states
 A  – set of joint actions

 P
T
 – transition function

 O  – set of joint observations

 P
O
 – observation function

 R  – reward function
 h   – horizon (finite)

〈S , A , PT ,O , PO , R ,h〉

a=〈a1,a2, ... ,an〉

o=〈o1, o2, ... , on〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)
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Running Example

 2 generals problem

 small army large army
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 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
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Transitions
● Both Observe: no state change
● At least 1 Attack: reset with 50% probability 

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
 ) = 0.85 * 0.85 = 0.7225
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● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

suppose h=3,
what do you think is optimal in 

this problem?
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Off-line / On-line phases

 off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

π=〈π1,π2〉
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Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
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Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

(ai
0,oi

1,ai
1 , ... , ai

t−1 , oi
t)

o⃗i=(oi
1, ... ,oi

t )
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No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: ??
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No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

 Multiagent belief, b
i 
(s,q

-i 
) [Hansen et al. 2004]

 belief over (future) policies of other agents
 Need to be able to predict the other agents!

 for belief update P(s'|s,a
i
,a

-i
), P(o|a

i
,a

-i
,s'), and prediction of R(s,a

i
,a

-i
)

 form of those other policies? most general: 

 if they use beliefs? → infinite recursion of beliefs!

π j : o⃗ j→a j
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Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]
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(o_large) --> observe
(o_small,o_small) --> attack
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Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
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() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

conceptually: 

what should policy optimize to 
allow for good coordination (thus 

high value)

?
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Coordination vs. Exploitation of 
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
-  low quality

 Ignore coordination
 E.g., compute an individual belief b

i 
(s)

and execute the MPOMDP policy
+ uses local information
-  likely to result in mis-coordination

 Optimal policy      should balance between these.

bi(s)=∑q−i

b(s , q−i)

π∗
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Planning Methods
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Brute Force Search 

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012] 

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153
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 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]  
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No easy way out...

The problem is 
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP) 
doubly exponential time required.

● Still, there are better algorithms that work better for 
at least some problems...

● Useful to understand what optimal really means!
(trying to compute it helps understanding)
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.



2012-05-29  EASSS – Spaan & Oliehoek 43/140

Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation



2012-05-29  EASSS – Spaan & Oliehoek 44/140

Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ



2012-05-29  EASSS – Spaan & Oliehoek 45/140

Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

? ?

S L
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 from 1 stage-to-go policies Qτ=1
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

a new qτ+1

S L
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

S L

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

S L
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Dynamic Programming – 2

 (obviously) this scales very poorly...

A O

Q1
τ=1 Q2

τ=1

A O
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=2 Q2

τ=2
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S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L



2012-05-29  EASSS – Spaan & Oliehoek 51/140

Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3

h num. indiv. policies

1 2

2 8

3 128

4 32768

5 2.1475e+09

6 9.2234e+18

7 1.7014e+38

8 5.7896e+76

This does not get us anywhere!

but...

This does not get us anywhere!

but...
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Dynamic Programming – 3

 Perhaps not all those       are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i
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Dynamic Programming – 3

 Perhaps not all those       are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i

Note: cannot prune independently!

● usefulness of a q
1 
depends on Q

2

● and vice versa
→ Iterated elimination of policies
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Dynamic Programming – 4

 Initialization

A O

Q1
τ=1 Q2

τ=1

A O
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Dynamic Programming – 4

 Exhaustive Backups gives

Q1
τ=2 Q2

τ=2
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=2 Q2

τ=2
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S L

Hypothetical Pruning
(not the result of actual pruning)
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Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=2 Q2

τ=2
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=2 Q2

τ=2
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Dynamic Programming – 4

 Etc...

Q1
τ=2 Q2

τ=2
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Dynamic Programming – 4

 Etc...

Q1
τ=2 Q2

τ=2

O

A A

S L

O
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O
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S L

In this case: symmetric
→ but need not be in general!

In this case: symmetric
→ but need not be in general!
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Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3

We avoid generation of many policies!
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Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
At the very end:

● …?
 

At the very end:

● …?
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
At the very end:

● evaluate all the remaining combinations of 
policies (i.e., the 'induced joint policies')

● select the best one

At the very end:

● evaluate all the remaining combinations of 
policies (i.e., the 'induced joint policies')

● select the best one
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Bottom-up vs. Top-down

 DP constructs bottom-up
 Alternatively try and construct top down

→ leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]
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Heuristic Search – Intro

 Core idea is the same as DP: 
 incrementally construct all (joint) policies
 try to avoid work

 Differences
 different starting point and increments
 use heuristics (rather than pruning) to avoid work
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 joint policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

1 partial joint policy

Start with unspecified policyStart with unspecified policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

?

S L
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? ?

S L
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? ?? ?

1 partial joint policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

? ?

S L
A

? ?

S L

O
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S L

S L
O

S L

? ?? ?

1 partial joint policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 complete joint policy
(full-length)



2012-05-29  EASSS – Spaan & Oliehoek 76/140

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

Root node:
unspecified joint policy

why?
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

Creating a child node:
 assignment actions at t=0
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!
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...

Node expansion:
create all children
Node expansion:
create all children
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

             t=0
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
             t=1

Expand next nodeExpand next node
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

             t=1
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
             t=2

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children 
(for each node at level 2!)

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children 
(for each node at level 2!)

...
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53

Select highest 
valued node
& expand...
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53

F-Value of a node n

● F(n) is a optimistic estimate
● I.e., F(n) >= V(n')  for any descendant n' of n

● F(n) = G(n) + H(n)

reward up to n
(for first t stages)

Optimistic estimate of reward 
below n
(reward for stages  t,t+1,...,h-1 )
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Further Developments
 DP

 Improvements to exhaustive backup [Amato et al. 2009]

 Compression of values (LPC) [Boularias & Chaib-draa 2008]

 (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]

 Improvements to PB backup [Seuken & Zilberstein 2007b,  Carlin and 
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

 Heuristic Search
 No backtracking: just most promising path

[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

 Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

 Incremental expansion: avoid expanding all child nodes
[Spaan et al. 2011]

 MILP [Aras and Dutech 2010]
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State of The Art

To get an impression...
 Optimal solutions

 Improvements of MAA* lead to 
significant increases

 but problem dependent

 Approximate (no quality guarantees)
 MBDP: linear in horizon [Seuken & zilberstein 2007a]

 Rollout sampling extension: up to 20 agents  [Wu et al. 2010b]

 Transfer planning: use smaller problems to solve large 
(structured) problems (up to 1000) agents [Oliehoek 2010]

h MILP LPC GMAA-ICE*

4 72 534.9 0.04

6 - 46.43*

h MILP LPC GMAA-ICE*

5 25 – <0.01

500 – – 0.94*

dec-tiger – runtime (s)

broadcast channel runtime (s)
* excluding heuristic
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Related Areas

 Partially observable stochastic games [Hansen et al. 2004]

 Non-identical payoff

 Interactive POMDPs  [Gmytrasiewicz & Doshi 2005, JAIR]

 Subjective view of MAS

 Imperfect information extensive form games
 Represented by game tree
 E.g., poker [Sandholm 2010, AI Magazine]
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Decision making under uncertainty

Matthijs Spaan1 and Frans Oliehoek2

 

1 Delft University of Technology
2 Maastricht University

Part 4: Selected Further Topics

14th European Agent Systems Summer School (EASSS '12)
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Some Further Topics

Overview:
 On-line planning
 Communication
 Factored Models

 Single Agent
 Multiple agents

 Goal: present an overview of some high-level ideas



2012-05-29 EASSS '12 -- Spaan & OliehoekEASSS – 
Spaan & Oliehoek

94/140

On-line Planning

 So far: planning in a separate off-line phase
 However: could also consider performing the planning 

during execution!
 do not plan over entire space, but only those reachable 

in the (near) future!
 but: need to plan at every step. 

 In control theory 'receding horizon control' or 'model 
predictive control' (but details different)
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Lookahead Planning

 Main idea: plan ahead for T stages
 Construct a tree of all possibilities and perform 

dynamic programming over this tree

s1

                 s0     ←  now

s1' s1''…

s2 s2' s2''…

s3 s3' s3''…

… …

…
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Lookahead Planning

 Main idea: plan ahead for T stages
 Construct a tree of all possibilities and perform 

dynamic programming over this tree

s1

                 s0     ←  now

s1' s1''…

s2 s2' s2''…

s3 s3' s3''…

… …

…

expand tree

pr
op

ag
at

e 
va

lu
es

This focuses 
computation on states 
that are reachable (in 

the near-future)
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Lookahead Planning

 Main idea: plan ahead for T stages
 Construct a tree of all possibilities and perform 

dynamic programming over this tree

s1

                 s0     ←  now

s1' s1''…

s2 s2' s2''…

s3 s3' s3''…

… …

…

expand tree

pr
op

ag
at

e 
va

lu
es

Expanding all possible next states 
→ tree is huge...  
Expanding all possible next states 
→ tree is huge...  
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Lookahead Planning

 Main idea: plan ahead for T stages
 Construct a tree of all possibilities and perform 

dynamic programming over this tree
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bound independent of number of 
states [Kearns et al. 2002 ML]
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Lookahead Planning

 Main idea: plan ahead for T stages
 Construct a tree of all possibilities and perform 

dynamic programming over this tree

                 s0     ←  now

s1' s1''

s2 s2'

s3 s3' …

…

expand tree

pr
op

ag
at

e 
va

lu
es

Expanding all possible next states 
→ tree is huge...  

● one idea: Sample!
● That works pretty good:
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Still very big...  

● Further idea: avoid expanding 
non-promising branches.

● Use upper confidence bounds
● UCT [Kocsis & Szepesvári, 2006 ECML]
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Some Further Topics

Overview:
 On-line planning
 Communication
 Factored Models

 Single Agent
 Multiple agents
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Communication

 Already discussed: 
instantaneous cost-free and noise-free communication

 Dec-MDP → multiagent MDP (MMDP)
 Dec-POMDP → multiagent POMDP (MPOMDP)

 but in practice:
 probability of failure
 delays
 costs

 Also: implicit communication! 
(via observations and actions)
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

 E.g. communication bit

 doubles the #actions and observations!
 Clearly, useful... but intractable for general settings

(perhaps for analysis of very small communication systems)
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Explicit Communication

 perform a particular information update (e.g., sync) as 
in the MPOMDP:

 each agent broadcasts its information, and 
 each agent uses that to perform joint belief update

 Other approaches:
 Communication cost [Becker et al. 2005]

 Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]

 communicate every k stages [Goldman & Zilberstein 2008]
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Some Further Topics

Overview:
 On-line planning
 Communication
 Factored Models

 Single Agent
 Multiple agents
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Factored MDPs  
 So far: used 'states'
 But in many problems states are factored

 state is an assignment of variables s=<f
1
,f

2
,...,f

k
>

 factored MDP [Boutilier et al. 99 JAIR]

Examples:

 Predator-prey: x, y coordinate!

 Robotic P.A.

 location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee 
request, robot holds coffee, mail present, robot holds mail, etc.

 Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”

P(st+1∣st , a=MTL)
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”

P(st+1∣st , a=MTL)

But there is 
conditional

independence!

E.g.: 'M' does not 
influence 'loc'

But there is 
conditional

independence!

E.g.: 'M' does not 
influence 'loc'
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”
L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional 
probability table 

(CPT)
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”
L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional 
probability table 

(CPT)

● Each next-stage variable has a CPT
● This allows for a much more compact representation!
● “Two-stage dynamic Bayesian network” (2DBN)

● Each next-stage variable has a CPT
● This allows for a much more compact representation!
● “Two-stage dynamic Bayesian network” (2DBN)
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional 
probability table 

(CPT)

Do we always have so much 
independence?

(what about other actions?)

Do we always have so much 
independence?

(what about other actions?)
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+1

loc

tidy

CR

RHC

M

RHM

“Deliver coffee”“Deliver coffee”
CPT encodes that IF

● loc=lab
● CR=1

→ high probability of 
CR becoming 0

CPT encodes that IF
● loc=lab
● CR=1

→ high probability of 
CR becoming 0
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Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95
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Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95

Similarly: rewards can be represented 
as decision trees (or ADDs)

→ So…?

Similarly: rewards can be represented 
as decision trees (or ADDs)

→ So…?
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Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95

Similarly: rewards can be represented 
as decision trees (or ADDs)

→ Can also represent value functions, 
policies as decision trees [Boutilier et al 99]

Similarly: rewards can be represented 
as decision trees (or ADDs)

→ Can also represent value functions, 
policies as decision trees [Boutilier et al 99]
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Factored POMDPs

 Of course POMDP models can also be factored
 Similar ideas applied [Hansen & Feng 2000, Poupart 2005, Shani et al. 

2008]

 α-vectors represented by ADDs
 beliefs too.

 This does not solve all problems: 
 over time state factors get more and more correlated, 

so representation grows large.
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Factored Multiagent Models

 Of course multiagent models can also be factored!
 Work can be categorized in a few directions:

 Trying to execute the factored (PO)MDP policy 
[Roth et al. 2007, Messias et al. 2011]

 Trying to execute independently as much as possible 
[Spaan & Melo 2008, Melo & Veloso 2011]

 Exploiting graphical structure between agents
(ND-POMDPs, Factored Dec-POMDPs) 

 Influence-based abstraction of policies of other agents 
(TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)
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Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]
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Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

These problems have
● State that cannot be influenced
● Factored reward function

R (s , a)=∑
e

Re(s ,ae)
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Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

π
7

π
6

π
4

π
1

π
2

π
3

π
5

V (π)=∑
e

V e(πe)

R (s , a)=∑
e

Re(s ,ae)
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Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

π
7

π
6

π
4

π
1

π
2

π
3

π
5

V (π)=∑
e

V e(πe)

R (s , a)=∑
e

Re(s ,ae)

This can be solved more 
efficiently than by 

looping through all π !



2012-05-29 EASSS '12 -- Spaan & OliehoekEASSS – 
Spaan & Oliehoek

127/140

Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]

st st+1

FL
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FL
2

FL
3

FL
4

a
1

a
2

a
3

FL
1

FL
2

FL
3

FL
4

R
1

R
2

R
3

R
4
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Can't we use the previous methods 
(reduction to DCOP) directly...

● Why ?

Can't we use the previous methods 
(reduction to DCOP) directly...

● Why ?
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]

st st+1

FL
1

FL
2

FL
3

FL
4

a
1

a
2

a
3

FL
1

FL
2

FL
3

FL
4

R
1

R
2

R
3

R
4

st st+1

FL
1

FL
2

FL
3

FL
4

a
1

a
2

a
3

FL
1

FL
2

FL
3

FL
4

R
1

R
2

R
3

R
4

Can't we use the previous methods 
(reduction to DCOP) directly...

● Why ?
→ dependence propagates!

Can't we use the previous methods 
(reduction to DCOP) directly...
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Solution Methods
● reduction to a type of COP
● but now: one for each stage!

● δ is a decision rule
(part of policy for 1 stage t)

→ leads to factored form of heuristic search
[Oliehoek 2010 PhD]

Solution Methods
● reduction to a type of COP
● but now: one for each stage!

● δ is a decision rule
(part of policy for 1 stage t)

→ leads to factored form of heuristic search
[Oliehoek 2010 PhD]
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Influence-Based Abstraction

 Try to define agents' local state
 Analyze how policies of other agents affect it

 find compact description for this influence

 Example: Mars Rovers [Becker et al. 2004 JAIR]

 2 rovers collect data at 4 sites

A

B
C

D
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Influence-Based Abstraction

 Try to define agents' local state
 Analyze how policies of other agents affect it

 find compact description for this influence

 Example: Mars Rovers [Becker et al. 2004 JAIR]

 2 rovers collect data at 4 sites

A

B
C

D

Transitions independent: Rovers drive independently
Rewards are dependent:

● 2 same soil samples of same site not so useful (sub additive)
● 2 pictures of (different sides) of same rock is useful (super additive)

Transitions independent: Rovers drive independently
Rewards are dependent:

● 2 same soil samples of same site not so useful (sub additive)
● 2 pictures of (different sides) of same rock is useful (super additive)
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Influence-Based Abstraction

 TI Dec-MDP
 extra reward (or penalty) 

at the end if 'joint event' 
happens

 joint event E=<e
1
,e

2
>

 From agent i's perspective:
if it realizes e

i 

→ extra reward with 
probability P(e

j
)
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Influence-Based Abstraction

 TI Dec-MDP
 extra reward (or penalty) 

at the end if 'joint event' 
happens

 joint event E=<e
1
,e

2
>

 From agent i's perspective:
if it realizes e

i 

→ extra reward with 
probability P(e

j
)

But most problems are not transition independent!?

Much further research, e.g.:
● Event-driven Dec-MDPs [Becker et al.04 AAMAS]
● Transition-decoupled POMDPs [Witwicki 2011 PhD]
● EDI-CR [Mostafa & Lesser 2009 WIIAT]
● IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]

But most problems are not transition independent!?

Much further research, e.g.:
● Event-driven Dec-MDPs [Becker et al.04 AAMAS]
● Transition-decoupled POMDPs [Witwicki 2011 PhD]
● EDI-CR [Mostafa & Lesser 2009 WIIAT]
● IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]
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