Decision making under uncertainty

Matthiijs Spaan ${ }^{1}$ and Frans Oliehoek ${ }^{2}$
${ }^{1}$ Delft University of Technology
${ }^{2}$ Maastricht University

Part 3: Multiagent Frameworks

14th European Agent Systems Summer School (EASSS '12) Valencia, Spain
www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

Multiagent Systems (MASs)

Why MASs?

- If we can make intelligent agents, soon there will be many...
- Physically distributed systems: centralized solutions expensive and brittle.
- can potentially provide [Vlassis, 2007,Sycara, 1998]
- Speedup and efficiency
- Robustness and reliability ('graceful degradation')
- Scalability and flexibility (adding additional agents)

Example: Predator-Prey Domain

- Predator-Prey domain - still single agent!
- 1 agent: the predator (blue)
- prey (red) is part of the environment
- on a torus ('wrap around world')
- Formalization:
- states
- actions
- transitions
- rewards

Example: Predator-Prey Domain

- Predator-Prey domain
- 1 agent: the predator (blue)
- prey (red) is part of the environment
- on a torus ('wrap around world')
- Formalization:

- states
- actions
- transitions
- rewards
$(-3,4)$
N,W,S,E
probability of failing to move, prey moves reward for capturing

Example: Predator-Prey Domain

- Predator-Prey domain

Markov decision process (MDP)

orey moves

Example: Predator-Prey Domain

- Predator-Prey domain

Markov decision process (MDP)

- Markovian state s...
- ...which is observed
- policy π maps states \rightarrow actions
- Value function Q(s,a)
- Value iteration: way to compute it.

orey moves

Partial Observability

- Now: partial observability
- E.g., limited range of sight
- MDP + observations
- explicit observations
- observation probabilities
- noisy observations (detection probability)

$o=$ 'nothing '

Partial Observability

- Now: partial observability
- E.g., limited range of sight
- MDP + observations
- explicit observations
- observation probabilities
- noisy observations (detection probability)

$o=(-1,1)$

Partial Observability

- Now: partial observability
- E.g., limited range of sight
- MDP + observations
- explicit observations
- observation probabilities
- noisy observations (detection probability)

$o=(-1,1)$

Can not observe the state
\rightarrow Need to maintain a belief over states $b(s)$
\rightarrow Policy maps beliefs to actions $\pi(b)=a$

Partial Observability

- Now: partial observability

Partially Observable MDP (POMDP)

- N

$$
o=(-1,1)
$$

Can not observe the state

\rightarrow Need to maintain a belief over states $b(s)$
\rightarrow Policy maps beliefs to actions $\pi(b)=a$

Partial Observability

- Now: partial observability

Partially Observable MDP (POMDP)

- reduction \rightarrow continuous state MDP (in which the belief is the state)
- Value iterations:
- make use of α-vectors
(correspond to complete policies)
- perform pruning: eliminate dominated α 's

$$
o=(-1,1)
$$

Can not observe the state

\rightarrow Need to maintain a belief over states $b(s)$
\rightarrow Policy maps beliefs to actions $\pi(b)=a$

Multiple Agents

- Now: multiple agents
- fully observable
- Formalization:
- states
- actions
- joint actions

- transitions
- rewards

Multiple Agents

- Now: multiple agents
- fully observable
- Formalization:
- states
- actions
- joint actions
- transitions
- rewards
((3,-4), (1,1), (-2,0))

\{N,W,S,E\}
$\{(N, N, N),(N, N, W), \ldots,(E, E, E)\}$
probability of failing to move, prey moves reward for capturing jointly

Multiple Agents

- Now: multiple agents

Multiagent MDP [Boutilier 1996]

- Differences with MDP
- n agents
- joint actions $a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Fo - transitions and rewards depend on joint actions
- Solution:
- Treat as normal MDP with 1 'puppeteer agent'
- Optimal policy $\pi(s)=a$
- Every agent executes its part

\square
-
- rewards reward for capturing jointly

Multiple Agents

- Now: multiple agents

```
Catch: ...?
```

Multiage

- Differences with MDP
- n agents
- joint actions $q=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Fo - transitions ard rewards depend on joint actions
- Solution:
- - Treat as normal MDP with 1 'puppeteer agent'
- Optimal policy $\pi(s)=a$
- Every agent executes its part

es

- rewards reward for capturing jointly

Multiple Agents

- Now: multiple agents

Catch: number of joint actions is exponential! Multiage (but other than that, conceptually simple.)

- Differences with MDP
- n agents
- joint actions $q=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Fo - transitions ard rewards depend on joint actions
- Solution:
- - Treat as normal MDP with 1 'puppeteer agent'
- Optimal policy $\pi(s)=a$
- Every agent executes its part

- rewards reward for capturing jointly

Multiple Agents \& Partial Observability

- Now: Both
- partial observability
- multiple agents

Multiple Agents \& Partial Observability

- Now: Both
- partial observability
- multiple agents
- Decentralized POMDPs (Dec-POMDPs) [Bernstein et al. 2002]

- both
- joint actions and
- joint observations

Multiple Agents \& Partial Observability

- Again we can make a reduction... any idea?

Multiple Agents \& Partial Observability

- Again we can make a reduction... Dec-POMDPs \rightarrow MPOMDP (multiagent POMDP)
- 'puppeteer' agent that
- receives joint observations
- takes joint actions

- requires broadcasting observations!
- instantaneous, cost-free, noise-free communication \rightarrow optimal [Pynadath and Tambe 2002]
- Without such communication: no easy reduction.

The Dec-POMDP Model

Acting Based On Local Observations

- MPOMDP: Act on global information
- Can be impractical:
- communication not possible
- significant cost (e.g battery power)
- not instantaneous or noise free
- scales poorly with number of agents!
- Alternative: act based only on local observations
- Other side of the spectrum: no communication at all
- (Also other intermediate approaches: delayed communication, stochastic delays)

Formal Model

- A Dec-POMDP
- $\left\langle S, A, P_{T}, O, P_{O}, R, h\right\rangle$
- n agents
- S - set of states
- A - set of joint actions
- P_{T} - transition function
- O - set of joint observations
- P_{o} - observation function
- R - reward function
- h - horizon (finite)

$a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
$P\left(s^{\prime} \mid s, a\right)$
$o=\left\langle o_{1}, o_{2}, \ldots, o_{n}\right\rangle$
$P\left(o \mid a, s^{\prime}\right)$
$R(s, a)$

Running Example

- 2 generals problem

Running Example

- 2 generals problem

S - $\left\{\mathrm{s}_{\mathrm{L}}, \mathrm{s}_{\mathrm{S}}\right\}$
$A_{i}-\{(\mathrm{O})$ bserve, (A)ttack $\}$
$O_{i}-\{(\mathrm{L})$ arge, (S)mall $\}$

Transitions

- Both Observe: no state change
- At least 1 Attack: reset with 50% probability

Observations

- Probability of correct observation: 0.85
- E.g., $\mathrm{P}\left(<\mathrm{L}, \mathrm{L}>\mid \mathrm{S}_{\mathrm{L}}\right)=0.85$ * $0.85=0.7225$

Running Example

- 2 generals problem

S - $\left\{\mathrm{s}_{\mathrm{L}}, \mathrm{s}_{\mathrm{S}}\right\}$
$A_{i}-\{(\mathrm{O})$ bserve, (A)ttack $\}$
$O_{i}-\{(L) a r g e, ~(S) m a l l ~\}$
Rewards

- 1 general attacks: he loses the battle - $R\left({ }^{*},<A, O>\right)=-10$
- Both generals Observe: small cost - $\mathrm{R}(*,<\mathrm{O}, \mathrm{O}>)=-1$
- Both Attack: depends on state
- $R\left(S_{L},<A, A>\right)=-20$
- $R\left(S_{R},<A, A>\right)=+5$

Running Example

- 2 generals problem
S - $\left\{\mathrm{s}_{\mathrm{L}}, \mathrm{s}_{\mathrm{S}}\right\}$
$A_{i}-\{(\mathrm{O})$ bserve, (A)ttack $\}$
$O_{i}-\{(L)$ arge, (S)mall $\}$
Rewards
- 1 general attacks: he loses the battle - $R\left({ }^{*},<A, O>\right)=-10$
- Both generals Observe: small cost - $R(*,<O, O>)=-1$
- Both Attack: depends on state
- $R\left(S_{L},<A, A>\right)=-20$
- $R\left(S_{R},<A, A>\right)=+5$

Off-line / On-line phases

- off-line planning, on-line execution is decentralized

Planning Phase

Execution Phase

Policy Domain

- What do policies look like?
- In general histories \rightarrow actions
- before: more compact representations...
- Now, this is difficult: no such representation known!
\rightarrow So we will be stuck with histories

Policy Domain

- What do policies look like?
- In general histories \rightarrow actions
- before: more compact representations...
- Now, this is difficult: no such representation known!
\rightarrow So we will be stuck with histories

Most general, AOHs:

$$
\left(a_{i}^{0,} o_{i}^{1,} a_{i}^{1}, \ldots, a_{i}^{t-1}, o_{i}^{t}\right)
$$

But: can restrict to deterministic policies
\rightarrow only need OHs:

$$
\vec{o}_{i}=\left(o_{i}^{1,} \ldots, o_{i}^{t}\right)
$$

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, $b(s)$ (as in MPOMDP) [Pynadath and Tambe 2002]
- compute b(s) using joint actions and observations
- Problem: ?

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, $b(s)$ (as in MPOMDP) [Pynadath and Tambe 2002]
- compute b(s) using joint actions and observations
- Problem: agents do not know those during execution

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, $b(s)$ (as in MPOMDP) [Pynadath and Tambe 2002]
- compute b(s) using joint actions and observations
- Problem: agents do not know those during execution
- Multiagent belief, $b_{i}\left(s, q_{-i}\right)$ [Hansen et al. 2004]
- belief over (future) policies of other agents
- Need to be able to predict the other agents!
- for belief update $P\left(s^{\prime} \mid s, a_{i}, a_{i}\right), P\left(o \mid a_{i}, a_{i j}, s^{\prime}\right)$, and prediction of $R\left(s, a_{i}, a_{-j}\right)$
- form of those other policies? most general: $\pi_{j}: \vec{o}_{j} \rightarrow a_{j}$
- if they use beliefs? \rightarrow infinite recursion of beliefs!

Goal of Planning

- Find the optimal joint policy $\pi^{*}=\left\langle\pi_{1}, \pi_{2}\right\rangle$
- where individual policies map OH to actions $\pi_{i}: \vec{O}_{i} \rightarrow A_{i}$
- What is the optimal one?
- Define value as the expected sum of rewards:

$$
V(\pi)=\boldsymbol{E}\left[\sum_{t=0}^{h-1} R(s, a) \mid \pi, b^{0}\right]
$$

- optimal joint policy is one with maximal value (can be more that achieve this)

Goal of Planning

- Find Optimal policy for 2 generals, $\mathrm{h}=3$

- whe

```
value=-2.86743
```

- What $\begin{aligned} & \text { () --> observe } \\ & \text { (0_small) --> observe }\end{aligned}$
- Def (o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(O_large,o_large) --> observe
() --> observe
(o_small) --> observe
(0_large) --> observe
- opti (o_small,o_small) --> attack
(cal (o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Goal of Planning

- Find Optimal policy for 2 generals, h=3
- whe
- What $\begin{aligned} & \text { () --> observe } \\ & \text { (0_small) --> observe }\end{aligned}$
- Def (o_large) --> observe
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(O_large,o_large) --> observe
() --> observe
(o_small) --> observe
(o_large) --> observe
- opti (o_small,o_small) --> attack (cal (o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Coordination vs. Exploitation of Local Information

- Inherent trade-off

coordination vs. exploitation of local information

- Ignore own observations \rightarrow 'open loop plan'
- E.g., "ATTACK on 2nd time step"
+ maximally predictable
- low quality
- Ignore coordination

$$
b_{i}(s)=\sum_{q_{-i}} b\left(s, q_{-i}\right)
$$

- E.g., compute an individual belief $b_{i}(\mathrm{~s})$ and execute the MPOMDP policy
+ uses local information
- likely to result in mis-coordination
- Optimal policy π^{*} should balance between these.

Planning Methods

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- using a Bellman-like equation [oliehoek 2012]
- So the stupidest algorithm is:
- compute $V(\pi)$, for all π
- select a π with maximum value
- Number of joint policies is huge! (doubly exponential in horizon h)
- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	$1.0737 e+09$
5	$4.6117 e+18$
6	$8.5071 e+37$
7	$2.8948 e+76$
8	$3.3520 e+153$

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- using a Bellman-like equation [oliehoek 2012]

No easy way out...
The problem is
NEXP-complete [Bernstein et al. 2002]
most likely (assuming EXP != NEXP) doubly exponential time required.
(ưuniy expurieniaal in murizuli 1)

- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	$1.0737 \mathrm{e}+09$
5	$4.6117 \mathrm{e}+18$
6	$8.5071 \mathrm{e}+37$
7	$2.8948 \mathrm{e}+76$
8	$3.3520 \mathrm{e}+153$

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- using a Bellman-like equation [oliehoek 2012]

No easy way out...

h	num. joint policies
1	4
2	64
3	16384
4	$1.0737 e+09$
5	$4.6117 e+18$
6	$8.5071 e+37$
7	$2.8948 e+76$

- Clearly intractá . Still, there are better algorithms that work better for at least some problems...
- Useful to understand what optimal really means! (trying to compute it helps understanding)

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {r-1 }}$
- construct all 2-stages-to-go policies $Q^{r=2}$, etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=- }}$

Exhaustive backup operation
etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=- }}$

Exhaustive backup operation

etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=- }}$

Exhaustive backup operation
etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=- }}$

Exhaustive backup operation
etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {r=1 }}$

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=- }}$

Dynamic Programming - 2

- (obviously) this scales very poorly...

Dynamic Programming - 2

- (obviously) this scales very poorly...

$$
Q_{1}^{\mathrm{T}=2}
$$

$$
Q_{2}^{\mathrm{T}=2}
$$

Dynamic Programming - 2

- (obviously) this scales very poorly...

$$
Q_{1}^{T=3}
$$

 గీ

$$
Q_{2}^{\mathrm{T}=3}
$$

Dynamic Programming - 2

- (obviously) this scales very poorly...

$$
Q_{1}^{\tau=3}
$$

$$
Q_{2}^{\mathrm{T}=3}
$$

8888888888 \%8 7	$1.7014 \mathrm{e}+38$
ช\%	5.7896e+76
శీ\% శగర శి	ภీ\%

Dynamic Programming - 3

- Perhaps not all those Q_{i}^{τ} are useful!
- Perform pruning of 'dominated policies'!
- Algorithm [Hansen et al. 2004] $\quad Q_{i}^{\mathrm{T}=1}=A_{i}$

```
Initialize Q1(1), Q2(1)
for tau=2 to h
    Q1(tau) = ExhaustiveBackup(Q1(tau-1))
    Q2(tau) = ExhaustiveBackup(Q2(tau-1))
    Prune(Q1,Q2,tau)
end
```


Dynamic Programming - 3

- Perhaps not all those Q_{i}^{τ} are useful!
- Perform pruning of 'dominated policies'!
- Algorithm [Hansen et al. 2004] $\quad Q_{i}^{\mathrm{T}=1}=A_{i}$

```
Initialize Q1(1), Q2(1)
for tau=2 to h
    Q1(tau) = ExhaustiveBackup(Q1(tau-1))
    Q2(tau) = ExhaustiveBackup(Q2(tau-1))
    Prune(Q1,Q2,tau)
```

end

Note: cannot prune independently!

- usefulness of a q_{1} depends on Q_{2}
- and vice versa
\rightarrow Iterated elimination of policies

Dynamic Programming - 4

- Initialization

$$
Q_{1}^{\tau=1}
$$

$$
Q_{2}^{\mathrm{T}=1}
$$

(A) 0

Dynamic Programming - 4

- Exhaustive Backups gives

$$
Q_{1}^{\mathrm{T}=2}
$$

$$
Q_{2}^{\mathrm{T}=2}
$$

Dynamic Programming - 4

- Pruning agent 1...

Hypothetical Pruning
(not the result of actual pruning)

$$
Q_{1}^{\mathrm{T}=2}
$$

Dynamic Programming - 4

- Pruning agent 2...

$$
\begin{array}{l|l}
Q_{1}^{\tau=2} & Q_{2}^{\tau=2}
\end{array}
$$

Dynamic Programming - 4

- Pruning agent 1...

Dynamic Programming - 4

- Etc...

Dynamic Programming - 4

- Etc...

In this case: symmetric
\rightarrow but need not be in general!

Dynamic Programming - 4

- Exhaustive backups:

$$
Q_{1}^{\mathrm{T}=3}
$$

ఓీ షి గ్ R"
 గ్ గి

 Kix గ్రిషి

We avoid generation of many policies!

$$
Q_{2}^{\mathrm{T}=3}
$$

గ్
 గీ గ్ గి

 R Kి

Dynamic Programming - 4

- Exhaustive backups:
$Q_{1}^{\mathrm{\tau}=3}$

 గి గి గి గి

$$
Q_{2}^{\mathrm{T}=3}
$$

Rీ

 గీ శీ

Dynamic Programming - 4

- Pruning agent 1...

$Q_{1}^{\mathrm{T}=3}$

గో ณః

 జీ గి గి గ్

$$
Q_{2}^{\mathrm{T}=3}
$$

 గి

Dynamic Programming - 4

- Pruning agent 2...

Dynamic Programming - 4

- Etc...

Dynamic Programming - 4

Dynamic Programming - 4

- Etc...

At the very end:

- evaluate all the remaining combinations of policies (i.e., the 'induced joint policies')
- select the best one

Bottom-up vs. Top-down

- DP constructs bottom-up
- Alternatively try and construct top down
\rightarrow leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]

Heuristic Search - Intro

- Core idea is the same as DP:
- incrementally construct all (joint) policies
- try to avoid work
- Differences
- different starting point and increments
- use heuristics (rather than pruning) to avoid work

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 joint policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 partial joint policy

Start with unspecified policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 partial joint policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 partial joint policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 complete joint policy (full-length)

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 3

- too big to create completely...
- Idea: use heuristics
- avoid going down non-promising branches!

- Apply A* \rightarrow Multiagent A* [Szer etal. 2005]

Heuristic Search - 3

- too biato cronta complataly
- Idea:

Main intuition A* *

- Apply

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biato cronta complataly
- Idea:

Main intuition A^{*}

- Apply

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biato cronta complatolv
- Idea:

Main intuition A^{*}

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biato cronta complatalv
- Idea:

Main intuition A^{*}

- Apply
- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too bictororonto
- Idea:

Main intuitior

F-Value of a node n

- $F(n)$ is a optimistic estimate
- I.e., $F(n)>=V(n ')$ for any descendant n ' of n
- $F(n)=G(n)+H(n)$

Optimistic estimate of reward below n
(reward for stages $\mathrm{t}, \mathrm{t}+1, \ldots, \mathrm{~h}-1$)

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Further Developments

- DP
- Improvements to exhaustive backup [Amato et al. 2009]
- Compression of values (LPC) [Boularias \& Chaib-draa 2008]
- (Point-based) Memory bounded DP [Seuken \& zilberstein 2007a]
- Improvements to PB backup [Seuken \& Zilberstein 2007b, Carlin and Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]
- Heuristic Search
- No backtracking: just most promising path [Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]
- Clustering of histories: reduce number of child nodes [Oliehoek et al. 2009]
- Incremental expansion: avoid expanding all child nodes [Spaan et al. 2011]
- MILP [Aras and Dutech 2010]

State of The Art

To get an impression...

- Optimal solutions
- Improvements of MAA* lead to significant increases
- but problem dependent

h	MILP	LPC	GMAA-ICE*
4	72	534.9	0.04
6		-	46.43^{*}

dec-tiger - runtime (s)

h	MILP	LPC	GMAA-ICE* *
5	25	-	<0.01
500	-	-	0.94^{*}

broadcast channel runtime (s)

- Approximate (no quality guarantees)
- MBDP: linear in horizon [Seuken \& zilberstein 2007a]
- Rollout sampling extension: up to 20 agents [Wu et al. 2010b]
- Transfer planning: use smaller problems to solve large (structured) problems (up to 1000) agents [Oliehoek 2010]

Related Areas

- Partially observable stochastic games [Hansen et al. 2004]
- Non-identical payoff
- Interactive POMDPs [Gmytrasiewicz \& Doshi 2005, JAIR]
- Subjective view of MAS
- Imperfect information extensive form games
- Represented by game tree
- E.g., poker [Sandholm 2010, Al Magazine]

Decision making under uncertainty

Matthijs Spaan ${ }^{1}$ and Frans Oliehoek ${ }^{2}$
${ }^{1}$ Delft University of Technology
${ }^{2}$ Maastricht University

Part 4: Selected Further Topics

14th European Agent Systems Summer School (EASSS '12) Valencia, Spain
www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
- Single Agent
- Multiple agents
- Goal: present an overview of some high-level ideas

On-line Planning

- So far: planning in a separate off-line phase
- However: could also consider performing the planning during execution!
- do not plan over entire space, but only those reachable in the (near) future!
- but: need to plan at every step.
- In control theory 'receding horizon control' or 'model predictive control' (but details different)

Lookahead Planning

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over this tree

Lookahead Planning

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over this tree

Lookahead Planning

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over th Expanding all possible next states
\rightarrow tree is huge...

Lookahead Planning

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over th Expanding all possible next states
\rightarrow tree is huge...

- one idea: Sample!
- That works pretty good: bound independent of number of states [Kearns et al. 2002 ML]

Lookahead Planning

- Main idea: plan ahead for T stages
- Construct a tree of all possibilities and perform dynamic programming over th Expanding all possible next states \rightarrow tree is huge...

- one idea: Sample!
- That works pretty good: bound independent of number of states [Kearns et al. 2002 ML]

Still very big...

- Further idea: avoid expanding non-promising branches.
- Use upper confidence bounds
- UCT [Kocsis \& Szepesvári, 2006 ECML]

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
- Single Agent
- Multiple agents

Communication

- Already discussed: instantaneous cost-free and noise-free communication
- Dec-MDP \rightarrow multiagent MDP (MMDP)
- Dec-POMDP \rightarrow multiagent POMDP (MPOMDP)
- but in practice:
- probability of failure
- delays
- costs
- Also: implicit communication! (via observations and actions)

Implicit Communication

- Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zillberstein 2003, Spaan et al. 2006]

Implicit Communication

- Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zillberstein 2003, Spaan et al. 2006]

Implicit Communication

- Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zillberstein 2003, Spaan et al. 2006]
- E.g. communication bit
- doubles the \#actions and observations!
- Clearly, useful... but intractable for general settings (perhaps for analysis of very small communication systems)

Explicit Communication

- perform a particular information update (e.g., sync) as in the MPOMDP:
- each agent broadcasts its information, and
- each agent uses that to perform joint belief update
- Other approaches:
- Communication cost [Becker et al. 2005]
- Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]
- communicate every k stages [Goldman \& Zilberstein 2008]

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
- Single Agent
- Multiple agents

Factored MDPs

- So far: used 'states'
- But in many problems states are factored
- state is an assignment of variables $s=\left\langle f_{1}, f_{2}, \ldots, f_{k}\right\rangle$
- factored MDP [Boutilier et al. 99 JAIR]

Examples:

- Predator-prey: x, y coordinate!
- Robotic P.A.

- location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee request, robot holds coffee, mail present, robot holds mail, etc.
- Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail

Factored States \& Transitions

CPT encodes that IF

- loc=lab
- CR=1
\rightarrow high probability of CR becoming 0

Solving Factored MDPs

- CPT also representable as a decision tree

Solving Factored MDPs

- CPT also representable as a decision tree

Solving Factored MDPs

- CPT also representable as a decision tree

$$
\begin{array}{ll}
\left.R^{\prime}=1\right)=1 & P\left(C R^{\prime}=1\right)=0.05 \\
\left.R^{\prime}=0\right)=0 & P\left(C R^{\prime}=0\right)=0.95
\end{array}
$$ policies as decision trees [Boutilier et al 99]

Factored POMDPs

- Of course POMDP models can also be factored
- Similar ideas applied [Hansen \& Feng 2000, Poupart 2005, Shani et al. 2008]
- α-vectors represented by ADDs
- beliefs too.
- This does not solve all problems:
- over time state factors get more and more correlated, so representation grows large.

Factored Multiagent Models

- Of course multiagent models can also be factored!
- Work can be categorized in a few directions:
- Trying to execute the factored (PO)MDP policy [Roth et al. 2007, Messias et al. 2011]
- Trying to execute independently as much as possible [Spaan \& Melo 2008, Melo \& Veloso 2011]
- Exploiting graphical structure between agents (ND-POMDPs, Factored Dec-POMDPs)
- Influence-based abstraction of policies of other agents (TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)

Graphical Structure between Agents

- Exploit (conditional) independence between agents
- E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]

Graphical Structure between Agents

- Exploit (conditional)These problems have
- E.g., sensor networ

- State that cannot be influenced
- Factored reward function

$$
R(s, a)=\sum_{e} R_{e}\left(s, a_{e}\right)
$$

Graphical Structure between Agents

- Exploit (conditional) These problems have
- E.g., sensor networ

This allows a reformulation as a (D)COP

Graphical Structure between Agents

- Exploit (conditional) These problems have
- E.g., sensor networ
- State that cannot be influenced
- Factored reward function

$$
R(s, a)=\sum_{e} R_{e}\left(s, a_{e}\right)
$$

Graphical Structure between Agents

- Factored Dec-POMDPs [Oliehoek et al. 2008 AAMAS]

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?
\rightarrow dependence propagates!

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?
\rightarrow dependence propagates!

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?
\rightarrow dependence propagates!

what influences
$R_{1}^{2} ?$

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?
\rightarrow dependence propagates!

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?
\rightarrow dependence propagates!

Graphical Structure between Agents

Can't we use the previous methods (reduction to DCOP) directly...

- Why ?
\rightarrow dependence propagates!

Graphical Structure between Agents

- Factored Dec-POMDPs [Oliehoek et al. 2008 AAMAS]

Solution Methods

- reduction to a type of COP
- but now: one for each stage!

- δ is a decision rule (part of policy for 1 stage t)
\rightarrow leads to factored form of heuristic search [Oliehoek 2010 PhD]

Influence-Based Abstraction

- Try to define agents' local state
- Analyze how policies of other agents affect it
- find compact description for this influence
- Example: Mars Rovers [Becker et al. 2004 JAIR]
- 2 rovers collect data at 4 sites

Influence-Based Abstraction

Transitions independent: Rovers drive independently Rewards are dependent:

- 2 same soil samples of same site not so useful (sub additive)
- 2 pictures of (different sides) of same rock is useful (super additive)
- Example: Mars Rovers [Becker et al. 2004 JAIR]
- 2 rovers collect data at 4 sites

Influence-Based Abstraction

- TI Dec-MDP
- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E=<e_{1}, e_{2}>$
- From agent i's perspective: if it realizes e_{i}
\rightarrow extra reward with probability $P\left(e_{j}\right)$

Influence-Based Abstraction

- TI Dec-MDP

- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E=<e_{1}, e_{2}>$

But most problems are not transition independent!?
Much further research, e.g.:

- Event-driven Dec-MDPS [Becker et al. 04 AAMAS]
- Transition-decoupled POMDPS [Witwicki 2011 PhD]
- EDI-CR [Mostafa \& Lesser 2009 WIIAT]
- IBA for Factored POSGS [Oliehoek et al. 2012 AAAI]

References

- References can be found on the tutorial website:

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

- Further references can be found in Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo, Martijn, editors, Reinforcement Learning: State of the Art, Adaptation, Learning, and Optimization, pp. 471-503, Springer Berlin Heidelberg, Berlin, Germany, 2012.
- Available from http://people.csail.mit.edu/fao/

