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Abstract— This paper develops a novel fuzzy reinforcement
learning (RL) based controller for multiagent partially ob-
servable Markov decision processes (POMDPs) modeled as
a sequence of Bayesian games. Multiagent POMDPs have
emerged as a powerful framework for modeling and optimizing
multiagent sequential decision making problems under uncer-
tainty, but finding optimal policies is computationally very
challenging. Our aim here is twin fold, (i) introduction of
a learning paradigm in infinite horizon multiagent POMDPs
and (ii) scaling up multiagent POMDP solution approaches
by introduction of fuzzy inference systems (FIS) based gen-
eralization. We introduce what may be called fuzzy multia-
gent POMDPs to overcome space and time complexity issues
involved in finding optimal policies for multiagent POMDPs.
The proposed FIS based RL controller approximates optimal
policies for multiagent POMDPs modeled as a sequence of
Bayesian games. We empirically evaluate the proposed fuzzy
multiagent POMDP controller on the standard benchmark
multiagent tiger problem and compare its performance against
other state-of-the-art multiagent POMDP solution approaches.
Results showcase the effectiveness of the proposed approach
and validate the feasibility of employing Bayesian game based
RL (in conjunction with FIS approximation) for addressing the
intractability of multiagent POMDPs.

I. INTRODUCTION

Optimization of sequential decision making problems un-

der uncertainty has been an active area of research for over

three decades now spanning diverse fields such as Artifi-

cial Intelligence, Operations Research and Control Theory.

Considerable success has been achieved for fully observable

environments via the well known Markov decision process

(MDP) framework [1], and also optimizing partially ob-

servable domains formalized as partially observable Markov

decision processes (POMDPs) [2] has seen many advances.

The POMDP framework extends MDP model by incor-

porating observations and their probability of occurrence

conditional on the state of the environment to deal with

perceptual aliasing and limited sensing capabilities [8], [30].

However, POMDPs become intractable for situations where

two or more agents (multiagent POMDPs) have to cooperate

to optimize a joint reward, nicely formalized by various

multiagent POMDP frameworks [3].

Reinforcement learning (RL) has now established itself

as a major technique for direct adaptive optimal control

of uncertain systems [4]. RL methods have their roots in
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the studies of animal learning and learning control work.

In the RL paradigm, agents learn to behave optimally by

repeated trial and error interactions with the environment. RL

has been successfully applied to a broad range of systems

and processes [5], [6] which clearly bring out its viability

as an optimization technique. However, majority of the RL

research has focused on the single agent fully observable

scenario, i.e., the MDP framework.

This work embodies a specific RL technique called Q

learning [5], [7] at its heart that has proven convergence.

Feasibility of defining an optimal Q value function Q∗ for

decentralized POMDPs has been established in [8], which

is defined over the space of histories (which grows expo-

nentially with the time horizon). In general, for moderately

large problem domains Q learning can be implemented using

a lookup table. However, for larger domains it is either

impractical (large state spaces) or infeasible (continuous state

spaces). Fortunately this ‘curse of dimensionality’ can be

tackled by several standard function approximation tech-

niques such as neural networks, fuzzy inference systems

(FIS) etc. Fuzzy systems, in particular, offer an effective

generalization scheme as they are capable of approximating

any real function to an arbitrary accuracy [9]. Furthermore,

empirical results with FIS have established that they are

capable of learning [10], [11].

Herein, we focus on a particular multiagent POMDP

formalism referred to as Dec-POMDPs, first proposed by

Bernstein et. al. [12]. In a Dec-POMDP, aim of each

agent is to maximize a joint global reward function. It

has been shown that even finite horizon Dec-POMDPs are

provably intractable (NEXP-complete) [13]. As this work

concerns infinite horizon multiagent POMDPs, we refrain

from discussing their finite horizon counterparts and refer

the interested reader to [3], [8] for a detailed discussion and

description of finite horizon multiagent POMDPs and their

solution approaches.

Given the intractability of solving general multiagent

POMDPs, several approximate approaches that make as-

sumptions about domain conditions have emerged as a vi-

able solution [14]. One such approach uses the assumption

of free communication to address intractability [15]. Free

communication at every time step transforms a multiagent

POMDP into a more tractable single agent POMDP, albeit

exponentially-sized in the number of agents. Authors in [16]

use this transformation to generate “centralized policies” for

multiagent POMDPs.

In the proposed approach we assume free communication

at policy generation time as in [15] to generate “centralized



policies” for multiagent teams modeled as what may be

referred to as fuzzy multiagent POMDPs. We employ a fuzzy

inference system for generalizing a continuous belief space

multiagent POMDP. We use an FIS based RL controller

instead of a neural controller as our experience has shown

[5], [11] that an FIS based approximation is both efficient and

quick in comparison to a neural function approximator. At the

policy generation stage a centralized joint policy is obtained

by solving the fuzzy multiagent POMDP modeled as a series

of Bayesian games [8]. The computed approximate optimal

joint policy is then executed in a decentralized manner. For

an in-depth discussion on the feasibility and effectiveness of

using communication in multiagent POMDPs, we refer the

reader to [3], [15], [16].

To the best of our knowledge, this work represents a

first effort that seeks to hybridize broad areas of fuzzy

systems, game theory, reinforcement learning, and multia-

gent POMDPs for devising a robust and effective solution

approach to address space and time intractability of multi-

agent POMDPs in general, and infinite horizon multiagent

POMDPs in particular. Besides our fuzzy RL method, an-

other significant contribution of this work is the introduction

of a compact representation of the belief space using FIS for

multiagent partially observable systems (pointed out in [3]

as a major need for improving scalability). We also show

how using the fuzzy q values that are learned online, we can

compactly represent a multiagent POMDP policy. Our pro-

posed approach scores over other state-of-the-art multiagent

POMDP solution approaches, in terms of scalability, compact

controller realization (low memory requirement), adaptability

(use of learning framework), and quality of policy obtained

(in terms of total discounted finite/infinite horizon reward

obtained).

The proposed approach is applicable to multiagent

POMDP domains wherein each agent maintains a belief

and communicates it to a central FIS at each stage, which

forms a fuzzy mapping of the belief space of the underlying

Multiagent POMDP. This fuzzy belief mapping is then used

to solve a sequence of Bayesian games to generate an

approximate optimal joint policy which is executed by each

agent. Under this joint action the system transitions to the

next state and each agent receives his own observation and

a signal that indicates the goodness of executing the joint

action (joint reward). This signal is then used to tune q values

to reflect the consequence of taking that joint action as per

standard Q learning.

We empirically test the proposed approach on standard

benchmark multiagent tiger problem [17]. Simulation re-

sults and comparison of expected discounted reward values

realized, against other recent multiagent POMDP solution

approaches validate the effectiveness and feasibility of FIS

based solution to multiagent POMDPs. Section II briefly

describes some background and related work. Section III

describes the proposed fuzzy multiagent POMDP solution

approach. Section IV gives empirical results of applying

the scheme on the multiagent tiger problem and section V

concludes the paper with a discussion on future scope of the

proposed methodology.

II. BACKGROUND AND RELATED WORK

We assume prior reader familiarity with the basic concepts

underlying Reinforcement Learning [4], POMDPs [2] and

Fuzzy Systems and give only a brief overview of the concepts

that form the backbone of our work.

A. Multiagent POMDPs

Multiagent sequential decision making problems under

partial observability where agents cooperate to optimize

performance can be modeled by several representations such

as MTDP [19], POIPSG [20], I-POMDP [21], and Dec-

POMDP [12]. A multiagent POMDP models a number

of agents that interact with their environment (system) at

discrete time steps t = 1, 2, . . . . At each time step t every

agent takes an action and the combination of these actions

(joint action) makes the system transit to the next state. At the

next time step, each agent receives a local observation of the

environment. State transition and observation probabilities

model the dynamics of the environment while global reward

specifies desired behavior or the goodness of taking joint

action in a particular state. For infinite horizon problems the

most typical goal of agents is to maximize expected infi-

nite horizon discounted global reward defined as
∑∞

t=0
γtrt

where rt is the reward received at time step t and γ is a

discount factor, 0 ≤ γ < 1. Herein, we assume that joint

policy is computed in a centralized manner and then the

computed policy is distributed to each agent who merely

executes it.

In this paper, we use the notation for multiagent POMDPs

as introduced in [12] which defines a Dec-POMDP as a tuple

< Na, S, {Ug}, P, {Ωg}, O, R, T > where

• S is the finite set of states;

• Na is the number of agents;

• Ug is the finite set of actions available to agent g and

Ū = ×g∈Na
Ug is the set of joint actions with ū = <

u1, . . . , uNa
> being joint action;

• P is the state transition function with p(s′|s, ū) being

the probability of landing in state s′ when joint action ū

is taken at state s;

• Ωg is the finite set of observations available to the

agent g and Ω̄ = ×g∈Na
Ωg is the set of joint ob-

servations with ō = < o1, . . . , oNa
> being a joint

observation;

• O : Ū × X → P (Ω̄) is an observation function

with O(ō|ū, s′) being the probability of receiving joint

observation ō given that joint action ū was taken and

led to state s′ (but each agent only observes its own og);

• R : Ū × S → ℜ is the reward function;

• T is the horizon.

In the infinite horizon case, we do not have the parameter T

but instead a discount factor 0 ≤ γ < 1 which limits the

infinite horizon sum
∑∞

t=0
γtrt.



B. Solution Approaches for Multiagent POMDPs

In [22], Bernstein et. al. proposed Bounded Policy Iteration

(BPI) for Multiagent POMDPs. The approach optimizes the

value of fixed number of nodes for each controller including

local controller for each agent and a correlation device. How-

ever BPI gets stuck in local optima as only one controller

node is improved at a time while all others are held fixed [3].

A recent approach by Amato et. al. [23] optimizes fixed

size controllers allowing for a specific start distribution over

states. The resulting non linear program (NLP) can be solved

efficiently using existing solvers. Generating globally optimal

solutions is hard and sometimes infeasible. Nevertheless,

they empirically show that use of non linear optimization

techniques leads to a better controller than produced by BPI.

Cogill et. al. [24] proposed an approximate dynamic

programming approach that uses Q functions. The approach

uses a centralized solution to tackle decentralized problems.

By incorporating problem specific human knowledge they

transform it into a set of easier sub problems and approximate

the optimal decentralized solution. The algorithm uses the

notion of Q functions to generate a linear programming

solution to the decentralized problem. However, the weights

used in the approximate linear programming have a huge

impact on the quality of policy obtained and finding good

weights remains an open problem.

In [15] authors propose to tackle intractability of multia-

gent POMDPs by using communication at every time step

to transform a multiagent POMDP into a more tractable

single agent POMDP. They propose “centralized” policies

for multiagent POMDPs at plan-time by assuming presence

of free communication. The approach basically trades off the

need to do some computation at execution time for ability

to generate policies more tractably at plan time. For more

information regarding this approach, we refer the reader

to [15].

C. FIS based Reinforcement Learning

Fuzzy logic is a mathematical approach to emulate human

way of thinking and learning. In MDPs fuzzy systems have

been used as function approximators to facilitate generaliza-

tion in state space and for generating continuous actions. In

[10], Jouffe introduced fuzzy Q learning wherein a collection

of fuzzy rules is considered as an agent. The approach

produces an action by triggering some rules and cooperating.

Following on this idea authors in [11] introduced fuzzy

Markov games where FIS is used to introduce generalization

in Markov games.

Fuzzy RL has also been used for multiagent systems, e.g.,

in [25] authors use fuzzy RL on a multiagent continuous

pursuit domain. In [26], authors implement fuzzy RL on

robotic soccer agents to enable them to coordinate their

behavior locally and socially while learning from experience.

For POMDPs, a neuro fuzzy approach is proposed in [27] to

generate fast, robust and easily interpretable solutions. To the

best of our knowledge, until now there have been very few

attempts at using fuzzy RL for effective learning in POMDPs.

III. FUZZY MULTIAGENT POMDP APPROACH

As our approach uses the formulation where multiagent

POMDPs are modeled as a sequence of Bayesian games [8],

we give a brief overview of Bayesian games (BG) to help

reader understanding of the concepts introduced later.

A. Bayesian games

A Bayesian game [28] is an augmented normal form game

in which players have some private information. This private

information defines the type of agent, i.e., a particular type

θg ∈ Θ of an agent g corresponds to that agent knowing

some particular information. A BG is defined by the tuple

< Na, Ū , Θ, P (Θ), {r1, . . . , rNa} > where

• Na is the number of agents;

• Ū is the set of joint actions;

• Θ = ×g∈Na
θg is the set of joint types over which a

probability distribution P (Θ) is defined;

• R : Θ× Ū → ℜ is the payoff function.

In a Bayesian game, agents can condition their action on

the private information they have. A joint policy in a BG

is represented by β =< β1, . . . , βNa
> where individual

policies are mappings from types to actions, i.e., βg : θg →
Ug (Ug being the action set of agent g). The solution of a

BG for identical payoffs is given by [8]:

β∗ = arg max
β

∑

θ∈Θ

p(θ)r(θ, β(θ)) (1)

where β(θ) =< β1(θ), . . . , βNa
(θ) > is the joint action

specified by β, p(θ) is the probability associated with joint

type θ and r(θ, β(θ)) is the payoff received. β∗ is the Pareto

optimal Nash equilibrium joint policy [28].

B. Multiagent POMDP: Sequence of BGs

In modeling multiagent POMDPs as a sequence of

BGs [29] the payoff function of BG (one stage) is represented

by Q(θ̄t, ū) where θ̄t = (ō0, ū0, ō1, . . . , ōt−1, ūt−1, ōt) is

the joint action-observation history up to time t. The initial

joint observation ō0 is assumed to be an empty observation:

ō0 = ō∅ = < o1,∅, o2,∅, . . . , oNa,∅ >. In [8], authors define

a new approximate Q-value function called QBG wherein

BG have types that correspond to single observations instead

of complete action-observation histories leading to smaller

and more tractable BGs.

As our proposed approach uses a fuzzy RL framework,

we use QBG at stage t as defined in [8] for a two stage BG.

The Q function at stage t can be constructed from fuzzy q

parameters defined at stage (t + 1): q(i, ūt, θt+1, β(θt+1))
where i is an index specifying the fuzzy rule Yi, ūt is the

joint action at stage t, θt+1 is the joint type at stage (t + 1),
and β(θt+1) is the joint BG policy corresponding to type

θt+1 at stage (t + 1). This conforms with the modeling of

Multiagent POMDPs as a series of BGs as introduced in [8].



C. Fuzzy Multiagent POMDPs

We propose fuzzy multiagent POMDPs as a generalization

of fuzzy Q learning (FQL) [10] / fuzzy Markov games (FMG)

[11] to a Multiagent POMDP setting. Following FQL /

FMG, we define fuzzy inference system for fuzzy multiagent

POMDPs as consisting of N rules of the following form:

Yi : If bt
1 is Li

1 and . . . and bt
Na

is Li
Na

then u1 = u11 and . . . and uNa
= u1Na

with QBG(i, u11, . . . , u1Na
)

or u1 = u21 and . . . and uNa
= u1Na

with QBG(i, u21, . . . , u1Na
)

...

or u1 = um1 and . . . and uNa
= umNa

with QBG(i, um1, . . . , umNa
)

(2)

where i is the index specifying rule Yi, m = |Ug|∀g ∈
Na, i.e., action set of all agents is assumed to have same

cardinality m. ukg is the kth action in Ug or kth action of

agent g, [bt
1, . . . , b

t
Na

] is the belief vector for agents 1, . . . , Na

at time t, Li
g is the linguistic term (fuzzy label) of input

variable bt
g in rule Yi and its membership function denoted

by µLi
g
.

Figure 1 shows the BG for time steps t and (t+1) for a fic-
titious multiagent POMDP with two agents each having two

actions and two observations. QBG(i, um1, . . . , umNa
) :=

QBG(i, ūt) is the solution of BG defined at the next stage

(t + 1) corresponding to the tuple < i, um1, . . . , umNa
>. It

is calculated as the maximizing sum of the entries of next

time step BG weighted by their respective type probabilities,

i.e.,

QBG(i, ūt) =

max
β

∑

θt+1∈Θ

p(θt+1|θt, ūt)q(i, ūt, θt+1, β(θt+1)) (3)

where θt+1 is the joint type at stage (t + 1) and ūt is the

joint action at stage t. The maximizing BG policy β∗ at next

stage (t + 1) is given by

β∗ = arg max
β

∑

θt+1∈Θ

p(θt+1|θt, ūt)q(i, ūt, θt+1, β(θt+1))

(4)

Thus, in order to code control policies (as in FQL /

FMG), we maintain a parameter vector q defined as

q(i, ūt, θt+1, β(θt+1)). These q values form the entries of the

next step BG matrix, i.e., at time step (t+1). Type probability
p(θt+1|θt, ūt) ∀θt+1 ∈ Θ is calculated as:

p(θt+1|θt, ūt) =
∑

st+1∈S

∑

st∈S

O(ōt+1|ūt, st+1)p(st+1|ūt, st)p(θt) (5)

where θt+1 = (θt, ūt, ōt+1).
We adapt a multiagent POMDP modeled as a sequence of

BGs to fuzzy RL by using Q learning update for updating the

q values at (t+1) stage BG matrix (Fig. 1). At each stage, we

where q(·) = q(i, ūt, θt+1, β(θt+1))

Fig. 1. Multiagent POMDP: Two stage Bayesian Game.

compute optimal QBG(·) value (3) and optimal joint policy

β∗ (4) corresponding to each fuzzy rule using a procedure

referred to as the forward sweep policy computation [29],

[8]. In a multiagent POMDP the agents do not have access

to the underlying state st but may have a belief over their

local state referred to as the belief state [30].

In the proposed fuzzy multiagent POMDP approach, we

match each agent’s belief bt
g (belief state of agent g at time t)

to fuzzy sets laid over its belief space or in other words gen-

erate a fuzzy belief. This matching leads to computation of

rule firing strength (αi(b̄t) ∀i ∈ N ) where b̄t = [bt
1, . . . , b

t
Na

]
as: αi(b̄t) = T (µLi

1
(bt

1), . . . , µLi
Na

(bt
Na

)) where the T-norm

is implemented by the product αi(b̄t) =
Na
∏

j=1

µLi
j
(bt

j). For

each rule Yi, we solve the BG at the next time step (t + 1)
as per (3) to get QBG(i, ūt) values that form the entries of

the BG matrix at stage t (Fig. 1). Optimal one-step target

value for rule Yi, i.e., V i
BG(b̄t) is the maximal value of the

BG matrix at stage t and is computed as:

V i
BG(b̄t) = max

ūt∈Ū
QBG(i, ūt) (6)

and optimal one-step joint action ū∗
BG(i); i ∈ N is given by

ū∗
BG(i) = arg max

ūt∈Ū
QBG(i, ūt) (7)

optimal one-step policy at stage t is thus

π∗
BG = [ū∗

BG(1), . . . , ū∗
BG(i), . . . , ū∗

BG(N)], (8)

where index i corresponds to rule Yi. In order to explore set

of possible actions and to acquire experience through RL,

we use a pseudo stochastic exploration/exploitation (EEP)

policy [4]. In the EEP strategy, we gradually reduce the



exploration parameter ε according to some schedule, e.g.,

halve the ε value every 50 iterations (in our case). We use

an ε-BG policy (ε-greedy in Q learning) meaning that we

choose a random action with probability ε:

ū
†
BG(i) = ε−BGū∗

BG(i)

=

{

ūrd(i) with probability ε

ū∗
BG(i) with probability (1− ε)

(9)

where ūrd is a random joint action, i.e., ūrd = [urd
1 , . . . , urd

Na
]

and each urd
g is an action chosen uniformly at random from

the action set of the agent g: Ug, and the ε-BG policy is

π
†
BG = [ū†

BG(1), . . . , ū†
BG(i), . . . , ū†

BG(N)]. (10)

Next, we generate global ε-BG action for each agent

u
†
BG(g) ∀g ∈ Naby summing the membership strength of

each action in the action set of agent g and choosing the

action that has the highest combined strength, i.e., one having

maximum
∑

i∈N αi(b̄t) value. Then global ε-BG joint action

ū
†
BG is given by ū

†
BG = [u†

BG(1), . . . , u
†
BG(Na)].

This joint action is then executed in a decentralized

manner, i.e., each agent executes his component of ū
†
BG

or executes u
†
BG(g). Under this ε-BG joint action ū

†
BG the

environment transitions to the next state st+1. Each agent

receives a local observation from the system, a global reward

rt and updates its local belief state bt+1
g using the standard

Bayesian update [30] as:

bt+1
g (st+1) =

Og(o
t
g|u

t
g, s

t+1)
∑

st∈S p(st+1|st, ūt)bt
g(s

t)
∑

st+1∈S Og(ot
g|u

t
g, s

t+1)
∑

st∈S p(st+1|st, ūt)bt
g(s

t)
(11)

where Og is the observation function of agent g. Currently,

we require every agent to have an independent observation

model. Each agent communicates this updated belief to the

fuzzy rule base for computing rule strength values αi(b̄t+1).
These current q parameter estimates are used to compute

global fuzzy BG target value (as in FQL [10]) as per:

V ∗
BG(b̄t+1) =

∑N

i=1
V i

BG(b̄t+1)αi(b̄t+1)
∑N

i=1
αi(b̄t+1)

. (12)

For each rule Yi, one of the QBG(i, ūt) values is selected
to compute global Q∗

BG value as per the ε-BG policy (9)

under each rule Yi: Q∗
BG(i) = QBG(i, ū†

BG(i)). Global

Q∗
BG value is the weighted sum of these ε-BG (rule) values

weighted by the rule firing strengths, i.e.,

Q∗
BG(b̄t) =

∑N

i=1
Q∗

BG(i)αi(b̄t)
∑N

i=1
αi(b̄t)

(13)

We calculate TD(0) error [4] for tuning q parameter values

as:

∆Q = rt + γV ∗
BG(b̄t+1)−Q∗

BG(b̄t) (14)

where rt is the global reward at stage t. Finally, q parameter

values are updated for all rules i ∈ N as per:

q(i, ūt, θt+1, β∗(θt+1))← q(i, ūt, θt+1, β∗(θt+1))

+ η∆Q
αi(b̄t)

∑N

i=1
αi(b̄t)

; ∀θt+1 ∈ Θ (15)

where 0 < η ≤ 1 is the learning rate parameter.

IV. EMPIRICAL PERFORMANCE: FUZZY MULTIAGENT

POMDP CONTROL

This section describes realization of the fuzzy multiagent

POMDP controller and results of evaluating the approach

on a multiagent tiger problem [17]. We briefly outline the

multiagent tiger problem domain.

A. Multiagent tiger

This problem has been a standard test bed for evaluating

the performance of multiagent POMDP solution approaches

as it is conceptually simple and yet includes all the finer in-

tricacies of the multiagent POMDP setup. This problem was

first introduced by Nair et. al. [17] and has been extensively

used by several researchers for validating the performance of

proposed multiagent POMDP solution approaches [3], [16],

[23]. It is a modification of the single agent tiger problem

introduced by Kaelbling et. al. [30].

The problem concerns two agents that are standing in a

hallway with two doors. Behind one of the doors is a tiger

while the other door has a treasure behind it. The task is

to open the correct door to receive the treasure. The states

are tiger behind left door (sl) or tiger behind the right door

(sr). Each agent has three actions, open the left door (uOL),

open the right door (uOR) and listen (uLI). The agents

can’t observe each other’s actions. Each agent can receive

two observations: hear sound left (oHL) or hear sound right

(oHR).

The problem starts with tiger uniformly located behind

either door, i.e., state is sl or sr with probability 0.5. The
state remains unchanged as long as no agent opens the door

and resets the moment any door is opened. For detailed

transition, observation and reward model, we refer the reader

to [17]. When either agent opens the door that has treasure

behind it gets reward however opening the door with tiger

results in a penalty. Opening the wrong door simultaneously

leads to lower penalty while opening correct door together

gives higher reward.

B. Fuzzy Multiagent POMDP controller realization

Since the problem has only two states sl and sr, we

can use only one probability p(sl) to specify belief as

p(sr) = 1 − p(sl). The belief space of either agent can be

fully specified by a probability distribution over only sl or

belief b = p(sl). The belief space for each agent (b1, b2)
is thus specified by (0, 1]. We partition the belief space of

each agent into three fuzzy subsets thereby generating nine

rules. Linguistic terms for these fuzzy sets are (TL, TNS, TR)

where TL stands for “tiger left”, TNS is “tiger not sure” and
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95.8% at 10000 Trials

86.3% at 1000 Trials

Fig. 2. Performance of fuzzy Multiagent POMDP controller.

TR stands for “tiger right”. The membership function for

each belief state variable (b1, b2) is the standard Gaussian

membership function defined by:

µl(bj) = e

−(bj−bl
j
)2

2(σl
j
)2 ; l = 1, 2, 3; j = 1, 2 (16)

where l are fuzzy labels for each variable bj(bj = pj(sl))
being the belief variable for agent j and pj(sl) is the

probability distribution over sl corresponding to agent j.

Fuzzy label centers are defined as bl
j = cj + dj(l − 1)

with c1 = c2 = 0, d1 = d2 = 0.5 and widths defined

by σ1
j = σ3

j = 0.15, σ2
j = 0.2. The RL parameters being,

discount factor γ = 0.9, learning rate η = 0.8. Exploration
parameter ε is initialized from 0.8 and halved every 50
iterations.

We refer to the time instant when either agent opens a

door (generating a global reward, rt) as the end of a trial.

When either agent opens the correct door a positive reward

is received and the trial is termed successful. Opening wrong

door results in penalty and the trial is referred to as a failure.

If both agents listen then trial continues. We initialize q

values as small random numbers between 0 and 1. Figure 2

shows learning performance of the fuzzy multiagent POMDP

controller, i.e., shows % success as a function of number of

trials.

We have averaged results over 100 episodes each of

10, 000 trials. The controller achieved a significant level of

performance (78% success) in just about 500 trials. The

performance reached 94.1% at 4000 trials and peaked to

95.8% success rate at the end of 10, 000 trials. It is to

be noted that initially agents fail to open the correct door

as (i) they are learning and q values are getting updated

(ii) use of the EEP policy leads to random agent actions

during the initial phase of the learning process. A 95.8%
success, therefore, represents significant performance level

as this includes initial failures as well. In fact, agents learn

to open the correct door with 95% success in about 1000

0 20 40 60 80 100
−10

0

10

20

30

40

50

60

Number of Trials

R
ew

a
rd

 A
ch

ie
v
ed

Quality of Learned Policy: Fuzzy Multi agent POMDP Control

 

 

52.05 at 100 trials

45.06 at 20 trials

Fig. 3. Control quality of proposed fuzzy multiagent POMDP controller,
showing the expected infinite horizon discounted reward.

TABLE I

COMPARISON OF MULTIAGENT POMDP CONTROLLERS

Algorithm/Approach Expected discounted reward

T = 6 T = 8 T =∞

Fuzzy multiagent POMDP 23.92 31.97 52.05

Free communication [15][16] 11.95 17

DEC-COMM [16] 9.35

Finite state controller [18] 5.2

trials.

We also plot infinite horizon discounted reward achieved

by the fuzzy multiagent POMDP approach (Fig. 3). This

value is a figure of merit for the quality of the learned policy,

i.e., how much reward agents accumulate while following

the discovered policy. We have averaged the results over

1000 episodes of 100 trials each. As can be seen, the

value achieved is 45.06 in 20 trials and the final expected

discounted infinite horizon value obtained is 52.05.

For effectively comparing performance of the proposed ap-

proach against other recent multiagent solution approaches,

we applied multiagent POMDP control for different horizons,

i.e., T = 6, T = 8, and infinite horizon (T = ∞). Table 1

gives a comparison of reward achieved by fuzzy multiagent

POMDP against (i) centralized POMDP control with free

communication, (ii) Dec-COMM (M. Roth et. al. [15], [16])

and (iii) Finite state controller (Amato et. al. [18]).

From Table 1 it can be observed that fuzzy multiagent

framework leads to significantly higher performance levels.

This may be attributable to a centralized rule generation

(centralized joint policy) due to instantaneous communica-

tion leading to an almost perfect inter-agent cooperation [15].

Use of FIS allows agents to quickly and stably zero-in on the

optimal joint policy. Realization of such high performance is

an indicator of the quality of learned policy.



V. CONCLUSIONS AND SCOPE FOR FUTURE WORK

This paper presents a novel fuzzy reinforcement learning

control scheme for multiagent POMDPs in a game-theoretic

setting. We introduce fuzzy RL in the multiagent POMDP

framework to successfully address time and space complexity

issues. It shows how FIS based function approximation

can be used as a principled means to represent continuous

multiagent belief space by what may be termed as fuzzy

multiagent POMDPs. To the best of our knowledge, this work

represents a first attempt in applying game theoretic learning

to an FIS based multiagent POMDP setup. We elucidate

feasibility of the proposed approach with empirical results on

the benchmark multiagent tiger problem. The proposed fuzzy

multiagent POMDP controller successfully discovers a high

quality optimal policy solution in reasonable number of trials.

Further, a comparison of the expected discounted reward

value (figure of merit for controller evaluation) achieved

against other very recent state-of-the-art multiagent POMDP

solution approaches ([15], [16], [18]) brings out the effec-

tiveness of the proposed approach.

Future work would involve testing the proposed approach

on other benchmark problem domains such as meeting in a

grid, box pushing [3], and real dynamical systems involving

multiple robots, e.g., multi robot urban search and rescue

operation. Another interesting future research direction could

be adapting the approach to the partially observable stochas-

tic game setup wherein each agent has an individual reward

function. In our view, proposed fuzzy multiagent POMDP

control is a promising new research direction that could

hold the key for addressing the scalability and tractability

of infinite horizon multiagent POMDPs.
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