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In this technical report we treat some properties of the recently introduced QBG-
value function. In particular we show that it is a piecewise linear and convex
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Section 1 Introduction 1

1 Introduction

The decentralized partially observable Markov decision process (Dec-POMDP) [1] is a generic
framework for multiagent planning in a partially observable environment. It considers settings
where a team of agents have to cooperate as to maximize some performance measure, which
describes the task. The agents, however, cannot fully observe the environment, i.e., there is
state uncertainty: each agent receives its own observations which provide a clue regarding the
true state of the environment.

Emery-Montemerlo et al. [3] proposed to use a series of Bayesian games (BG) [6] to find
an approximate solution for Dec-POMDPs, by employing a heuristic payoff function for the
BGs. In previous work [5], we extended this modeling to the exact setting by showing that
there exist an optimal Q-value function Q∗ that, when used as the payoff function for the
BGs, yields the optimal policy. We also argued that computing Q∗ is hard and introduce
QBG as a new approximate Q-value function that is a tighter upper bound to Q∗ than previous
approximate Q-value functions. Apart from its use as an approximate Q-value function for (non-
communicative) Dec-POMDPs [5], the QBG-value function can also be used in communicative
Dec-POMDPs: when assuming the agents in a Dec-POMDP can communicate freely, but that
this communication is delayed by one time step, the QBG-value function is optimal.

In this report we treat several properties of the QBG-value function. We show that for a
finite horizon, the QBG Q-value function QB(~θ t,a), corresponds with a value function over the

joint belief space QB(b
~θ t

,a) and that it is piecewise linear and convex (PWLC).
For the infinite-horizon case, we also show that we can define a QBG backup operator, and

that the operator is a contraction mapping. As a result we can conclude the existence of an
optimal Q∗

BG for the infinite horizon.
First, we further formalize Dec-POMDPs and relevant notions, then section 3 treats the finite

horizon: 3.1 shows that QBG is a function over the belief space and section 3.2 we prove that
this function is PWLC. In section 4 we treat the infinite-horizon case: section 4.1 shows that
in this case joint beliefs are also a sufficient statistic. Section 4.2 shows how the QBG functions
can be altered to form a backup operator for the infinite-horizon case and that this operator is
a contraction mapping. Finally, in Section 5 we prove that the optimal Dec-POMDP Q-value
function cannot be defined over joint beliefs.

2 Model and definitions

As mentioned, we adopt the Dec-POMDP framework [1].

Definition 2.1 A decentralized partially observable Markov decision process (Dec-POMDP)
with m agents is defined as a tuple 〈S,A, T, R,O, O〉 where:

• S is a finite set of states.

• The set A = ×iAi is the set of joint actions, where Ai is the set of actions available to
agent i. Every time step one joint action a = 〈a1, ..., am〉 is taken.1

• T is the transition function, a mapping from states and joint actions to probability distri-
butions over next states: T : S ×A → P(S).2

• R is the reward function, a mapping from states and joint actions to real numbers: R :
S ×A → R.

1Unless stated otherwise, subscripts denote agent indices.
2We use P(X) to denote the infinite set of probability distributions over the finite set X.
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• O = ×iOi is the set of joint observations, with Oi the set of observations available to agent
i. Every time step one joint observation o = 〈o1, ..., om〉 is received.

• O is the observation function, a mapping from joint actions and successor states to prob-
ability distributions over joint observations: O : A× S → P(O).

Additionally, we assume that b0 ∈ P(S) is the initial state distribution at time t = 0.
The planning problem is to compute a plan, or policy, for each agent that is optimal for a

particular number of time-steps h, also referred to as the horizon of the problem. A common
optimality criterion is the expected cumulative (discounted) future reward:

E

(
h−1∑

t=0

γtR(t)

)

. (2.1)

The horizon h can be assumed to be finite, in which case the discount factor γ is generally set
to 1, or one can optimize over an infinite horizon, in which case h = ∞ and 0 < γ < 1 to ensure
that the above sum is bounded.

In a Dec-POMDP, policies are mappings from a particular history to actions. Here we
introduce a very general form of history.

Definition 2.2 The action-observation history for agent i, ~θ t
i , is the sequence of actions taken

and observations received by agent i until time step t:

~θ t
i =

(
a0

i , o
1
i , a

1
i , ..., a

t−1
i , ot

i

)
. (2.2)

The joint action-observation history is a tuple with the action-observation history for all agents
~θ t =

〈

~θ t
1 , ..., ~θ t

m

〉

. The set of all action-observation histories for agent i at time t is denoted ~Θi.

In the QBG setting, at a time step t the previous joint action-observation history ~θ t−1 is
assumed common knowledge, as the one-step-delayed communication of ot−1 has arrived. When
planning is performed off-line, the agents know each others policies and at−1 can be deduced
from ~θ t−1. The remaining uncertainty is regarding the last joint observation ot. This situation
can be modeled using a Bayesian game (BG) [6]. In this case the type of agent i corresponds
to its last observation θi ≡ ot

i. Θ = ×iΘi is the set of joint types, here corresponding with
the set of joint observations O, over which a probability function P (Θ) is specified, in this case
P (θ) ≡ P (ot|~θ t−1,at−1). Finally, the BG also specifies a payoff function u(θ,a) that maps joint
types and actions to rewards.

A joint BG-policy is a tuple β = 〈β1, ..., βm〉, where the individual policies are mappings
from types to actions: βi : Θi → Ai. The solution of a BG with identical payoffs for all agents
is given by the optimal joint BG-policy β∗:

β∗ = arg max
β

∑

θ∈Θ

P (θ)u(θ, β(θ)), (2.3)

where β(θ) = 〈β1(θ1), ..., βm(θm)〉 is the joint action specified by β for joint type θ. In this case,
for a particular joint action-observation history ~θ t, the agents know ~θ t−1 and at−1 and they
solve the corresponding BG:

β∗

〈~θ t−1,at−1〉
= arg max

β〈~θ t−1,at−1〉

∑

ot

P (ot|b
~θ t−1

,at−1)u〈~θ t−1,at−1〉(o
t, β〈~θ t−1,at−1〉(o

t)), (2.4)

When defining u〈~θ t−1,at−1〉(o
t,at) ≡ Q∗

B(~θ t,at), the QBG-value function is the optimal payoff

function [5]. It is given by:
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Q∗
B(~θ t,a) = R(~θ t,a) + max

β〈~θ t,a〉

∑

ot+1

P (ot+1|~θ t,a)Q∗
B(~θ t+1, β〈~θ t,a〉(o

t+1)), (2.5)

where β〈~θ t,a〉 =
〈

β〈~θ t,a〉,1(o
t+1
1 ), ..., β〈~θ t,a〉,m(ot+1

m )
〉

is a tuple of individual policies β〈~θ t,a〉,i :

Oi → Ai for the BG played for ~θ t,a, and where R(~θ t,a) =
∑

s R(s,a)P (s|~θ t) is the expected
immediate reward.

Note that the QBG-setting is quite different from the standard Dec-POMDP setting, as
shown in [5]. In this latter case, rather than solving a BG for each ~θ t−1 and at−1 (i.e., (2.4))
the agents solve a BG for each time step 0, 1, ..., h − 1:

βt,∗ = arg max
βt

∑

~θ t∈~Θt
π∗

P (~θ t)Q∗(~θ t, βt(~θ t)). (2.6)

When the the summation is over ~Θt
π∗ : all joint action-observation histories that are consistent

with the optimal joint policy π∗3, and when the BGs use the optimal Q-value function:

Q∗(~θ t,a) = R(~θ t,a) +
∑

ot+1

P (ot+1|~θ t,a)Q∗(~θ t+1, π∗(~θ t+1)), (2.7)

then, solving the BGs for time step 0, 1, ..., h−1 will yield the optimal policy π∗, i.e., πt,∗ ≡ βt,∗.

3 Finite horizon

In this section we will consider several properties of the finite-horizon QBG-value function.

3.1 QBG is a function over the joint belief space

In a single agent POMDP, a belief b is a probability distribution over states that forms a
sufficient statistic for the decision process. In a Dec-POMDP we use the term joint belief and

write b
~θ t

∈ P(S) for the probability distribution over states induced by joint action-observation
history ~θ t. Here we show that the QBG value function QB(~θ t,a) corresponds with a Q-value

function over the space of joint beliefs b
~θ t

.

Lemma 3.1 The QBG-value function (2.5) is a function over the joint belief space, I.e., it
is possible convert (2.5) to a Q-value function over this joint belief space by substituting the
action-observation histories by their induced joint beliefs:

Q∗
B(b

~θ t

,a) = R(b
~θ t

,a) + max
β〈~θ t,a〉

∑

ot+1

P (ot+1|b
~θ t

,a)Q∗
B(b

~θ t+1
, β〈~θ t,a〉(o

t+1)), (3.1)

where b
~θ t

denotes the joint belief induced by ~θ t.

Proof First we need to show that there exists exactly one joint belief over states b
~θ t

∈ P(S)
for each joint-action observation history ~θ t. This is almost trivial: using Bayes’ rule we can

calculate the joint belief b
~θ t+1

resulting from b
~θ t

by a and ot+1 by:

∀st+1 b
~θ t+1

(st+1) =
P (st+1,ot+1|b

~θ t
,a)

P (ot+1|b~θ t
,a)

. (3.2)

Because we assume only one initial belief, there is exactly one joint belief b
~θ t

for each ~θ t.

3I.e., the action-observation histories that specify the same actions for all observation histories as π
∗.
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Of course the converse is not necessarily true: a particular distribution over states can
correspond to multiple joint action-observation histories. Therefore, to show that the conversion

from QB(~θ t,a) to QB(b
~θ t

,a) is possible we will need to show that it is impossible that two
different joint action-observation histories ~θ t,a, ~θ t,b corresponds to the same belief , but have

different QBG values. I.e., we have to show that if b
~θ t,a

= b
~θ t,b

then

∀a Q∗
B(~θ t,a,a) = Q∗

B(~θ t,b,a) (3.3)

holds.

We give a proof by induction, the base case is given by the last time step t = h − 1. In this
case (2.5) reduces to:

Q∗
B(~θ t,a) = R(~θ t,a) =

∑

s

R(s,a)b
~θ t

(s). (3.4)

Clearly, if b
~θ t,a

= b
~θ t,b

then (3.3) holds. Therefore the base case holds. Now we need to show

that if b
~θ t+1,a

= b
~θ t+1,b

implies Q∗
B(~θ t+1,a,a) = Q∗

B(~θ t+1,b,a), then it should also hold that

b
~θ t,a

= b
~θ t,b

implies Q∗
B(~θ t,a,a) = Q∗

B(~θ t,b,a).

In the base case, the immediate rewards R(~θ t,a,a) and R(~θ t,b,a) are equal when b
~θ t,a

= b
~θ t,b

.
Therefore we only need to show that the future reward is also equal. I.e., we need to show that,

if b
~θ t,a

= b
~θ t,b

, it holds that

max
β〈~θ t,a,a〉

∑

ot+1

P (ot+1|~θ t,a,a)Q∗
B(~θ t+1,a, β〈~θ t,a,a〉(o

t+1)) =

max
β〈~θ t,b,a〉

∑

ot+1

P (ot+1|~θ t,b,a)Q∗
B(~θ t+1,b, β〈~θ t,b,a〉(o

t+1)), (3.5)

given that b
~θ t+1,a

= b
~θ t+1,b

implies Q∗
B(~θ t+1,a,a) = Q∗

B(~θ t+1,b,a).

Because b
~θ t,a

= b
~θ t,b

, we know that for each a,ot+1 the resulting beliefs will be the same

b
~θ t+1,a

= b
~θ t+1,b

. The induction hypothesis says that the QBG-values of the resulting joint beliefs
are also equal in that case, i.e., ∀a Q∗

B(~θ t+1,a,a) = Q∗
B(~θ t+1,b,a). Also it is clear that the

probabilities of joint observations are equal ∀ot+1 P (ot+1|~θ t,a,a) = P (ot+1|~θ t,b,a).

Therefore, the future rewards for ~θ t,a and ~θ t,b as shown by (3.5) must be equal: they are
defined as the value of the optimal solution to identical Bayesian games (meaning BGs with the
same probabilities and payoff function). �

3.2 QBG is PWLC over the joint belief space

Here we prove that the QBG-value function is PWLC. The proof is a variant of the proof that
the value function for a POMDP is PWLC [7].

Theorem 3.1 The QBG-value function for a finite horizon Dec-POMDP with 1 time step de-
layed, free and noiseless communication, as defined in (3.1) is piecewise-linear and convex
(PWLC) over the joint belief space.

Proof The proof is by induction. The base case is the last time step t = h − 1. For the last
time step (3.1) reduces to:

Q∗
B(b

~θ h−1
,a) = R(b

~θ h−1
,a) =

∑

s

R(s,a)b
~θ h−1

(s) = Ra · b
~θ h−1

, (3.6)
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where Ra is the immediate reward vector for joint action a, directly given by the immediate

reward function R, and where ( · ) denotes the inner product. Q∗
B(b

~θ t
,a) is defined by a single

vector Ra and therefore trivially PWLC.
The induction hypothesis is that for some time step t + 1 we can represent the QBG value

function as the maximum of the inner product of a belief and a set of vectors V t+1
a associated

with joint action a.

∀
b
~θ t+1 Q∗

B(b
~θ t+1

,a) = max
vt+1
a ∈Vt+1

a

b
~θ t+1

· vt+1
a . (3.7)

Now we have to prove that, given the induction hypothesis, QBG is also PWLC for t. I.e., we
have to prove:

∀
b
~θ t Q∗

B(b
~θ t

,a) = max
vt
a
∈Vt

a

b
~θ t

· vt
a. (3.8)

This is shown by picking up an arbitrary b
~θ t

, for which the value of joint action a is given
by (3.1), which we can rewrite as follows:

Q∗
B(b

~θ t

,a) = R(b
~θ t

,a) + max
β〈~θ t,a〉

∑

ot+1

P (ot+1|b
~θ t

,a)Q∗
B(b

~θ t+1
, β〈~θ t,a〉(o

t+1)) (3.9)

= b
~θ t

· Ra + max
β〈~θ t,a〉

∑

ot+1

P (ot+1|b
~θ t

,a) max
vt+1
a
′ ∈Vt+1

a
′ s.t.

β〈~θ t,a〉(o
t+1)=a′

b
~θ t+1

· vt+1
a′ (3.10)

where Ra is the immediate reward vector for joint action a. In the second part b
~θ t+1

is the belief

resulting from b
~θ t

by a and ot+1 and is given by:

∀st+1 b
~θ t+1

(st+1) =
P (st+1,ot+1|b

~θ t
,a)

P (ot+1|b~θ t
,a)

, (3.11)

with
P (st+1,ot+1|b

~θ t

,a) =
∑

st

P (ot+1|a, st+1)P (st+1|st,a)b
~θ t

(st). (3.12)

Therefore we can write the second part of (3.10) as

max
β〈~θ t,a〉

∑

ot+1

P (ot+1|b
~θ t

,a) max
vt+1
a
′ ∈Vt+1

a
′ s.t.

β〈~θ t,a〉(o
t+1)=a′

∑

st+1∈S

b
~θ t+1

(st+1)vt+1
a′ (st+1) =

max
β〈~θ t,a〉

∑

ot+1

P (ot+1|b
~θ t

,a) max
vt+1
a
′ ∈Vt+1

a
′ s.t.

β〈~θ t,a〉(o
t+1)=a′

∑

st+1∈S

[

P (st+1,ot+1|b
~θ t

,a)

P (ot+1|b~θ t
,a)

]

vt+1
a′ (st+1) =

max
β〈~θ t,a〉

∑

ot+1

max
vt+1
a
′ ∈Vt+1

a
′ s.t.

β〈~θ t,a〉(o
t+1)=a′

∑

st+1∈S

P (st+1,ot+1|b
~θ t

,a)vt+1
a′ (st+1) =

max
β〈~θ t,a〉

∑

ot+1

max
vt+1
a
′ ∈Vt+1

a
′ s.t.

β〈~θ t,a〉(o
t+1)=a′

∑

st+1∈S

[
∑

st

P (ot+1|a, st+1)P (st+1|st,a)b
~θ t

(st)

]

vt+1
a′ (st+1) =

max
β〈~θ t,a〉

∑

ot+1

max
vt+1
a
′ ∈Vt+1

a
′ s.t.

β〈~θ t,a〉(o
t+1)=a′

∑

st




∑

st+1∈S

P (ot+1|a, st+1)P (st+1|st,a)vt+1
a′ (st+1)



 b
~θ t

(st). (3.13)
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Note that for a particular a,ot+1 and vt+1
a′ ∈ V t+1

a′ we can define a function:

g
vt+1
a
′

a,o (st) =
∑

st+1∈S

P (o|a, st+1)P (st+1|st,a)vt+1
a′ (st+1). (3.14)

This function defines a gamma-vector g
vt+1
a
′

a,o . For a particular a,ot+1 we can define the set of
gamma vectors that are consistent with a BG-policy β〈~θ t,a〉 for time step t + 1 as

Ga,o,β〈~θ t,a〉
≡

{

g
vt+1
a
′

a,o | vt+1
a′ ∈ V t+1

a′ ∧ β〈~θ t,a〉(o
t+1) = a′

}

. (3.15)

Combining the gamma vector definition with (3.10) and (3.13) yields

Q∗
B(b

~θ t

,a) = b
~θ t

· Ra + max
β〈~θ t,a〉

∑

ot+1

max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

∑

st

g
vt+1
a
′

a,o (st)b
~θ t

(st). (3.16)

Now let g∗
b
~θ t

,a,o,β〈~θ t,a〉
denote the maximizing gamma-vector, i.e.:

∀o g∗
b
~θ t

,a,o,β〈~θ t,a〉
≡ arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

∑

st

g
vt+1
a
′

a,o (st)b
~θ t

(st). (3.17)

This allows to rewrite (3.16) to:

Q∗
B(b

~θ t

,a) = b
~θ t

· Ra + max
β〈~θ t,a〉

∑

ot+1

∑

st

g∗
b
~θ t

,a,o,β〈~θ t,a〉
(st)b

~θ t

(st)

= b
~θ t

· Ra + max
β〈~θ t,a〉

∑

st

[
∑

ot+1

g∗
b
~θ t

,a,o,β〈~θ t,a〉
(st)

]

b
~θ t

(st). (3.18)

The vectors for the different possible joint observations are now combined:

g∗
b
~θ t

,a,β〈~θ t,a〉
(st) ≡

∑

ot+1

g∗
b
~θ t

,a,o,β〈~θ t,a〉
(st), (3.19)

which allows us to rewrite (3.18) as follows:

Q∗
B(b

~θ t

,a) = b
~θ t

· Ra + max
β〈~θ t,a〉

∑

st

g∗
b
~θ t

,a,β〈~θ t,a〉
(st)b

~θ t

(st)

= max
β〈~θ t,a〉

(

Ra + g∗
b
~θ t

,a,β〈~θ t,a〉

)

· b
~θ t

(3.20)

= max
β〈~θ t,a〉

v
∗,t

b
~θ t

,a,β〈~θ t,a〉
· b

~θ t

(3.21)

with

v
∗,t

b
~θ t

,a,β〈~θ t,a〉
= Ra +

∑

ot+1








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

∑

st

g
vt+1
a
′

a,o (st)b
~θ t

(st)








(3.22)

By defining

Vt

a,b
~θ t ≡

{

v
∗,t

b
~θ t

,a,β〈~θ t,a〉
| ∀β〈~θ t,a〉

}

, (3.23)
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we can write

Q∗
B(b

~θ t

,a) = max
vt
a
∈Vt

a,b
~θ t

vt
a · b

~θ t

, (3.24)

which almost is what had to be proven. Although, for each b
~θ t

, the set V t

a,b
~θ t can contain

different vectors. However, it is clear that

∀
b
~θ t max

vt
a
∈Vt

a,b
~θ t

vt
a · b

~θ t

= max
vt
a
∈Vt

a

vt
a · b

~θ t

(3.25)

where

Vt
a ≡

⋃

b
~θ t

∈P(S)

Vt

a,b
~θ t . (3.26)

I.e., there is no vector in a different set V t

a,b
~θ t ′

that yields a higher value at b
~θ t

than the max-

imizing vector in V t

a,b
~θ t . This can be easily seen as V t

a,b
~θ t is defined as the maximizing set of

vectors at each belief point, and the different sets V t

a,b
~θ t are all constructed using the same next

time step policies and vectors, i.e., vt+1
a
′ ∈Vt+1

a
′ s.t. β〈~θ t,a〉(o

t+1)=a′ are the same. For a more formal
proof see appendix A.

As a result we can write

Q∗
B(b

~θ t

,a) = max
vt
a
∈Vt

a

vt
a · b

~θ t

, (3.27)

which is what had to be proven for b
~θ t

. Realizing that we took no special assumption on b
~θ t

,
we can conclude this holds for all joint beliefs. �

4 Infinite horizon QBG

Here we discuss how QBG can be extended to the infinite horizon. A naive translation of (3.1)
to the infinite horizon would be given by:

QB(b
~θ,a) = R(b

~θ,a) + γ max
βfi

b
~θ,a

fl

∑

o

P (o|b
~θ,a)QB(b(

~θ,a,o), βD

b
~θ,a

E(o)). (4.1)

However, in the infinite-horizon case, the length of the joint action-observation histories is infi-
nite, the set of all joint action-observation histories is infinite and there generally is an infinite
number of corresponding joint beliefs. This means that it is not possible to convert a QBG

function over joint action-observation histories to one over joint beliefs for the infinite horizon.4

Rather, we define a backup operator HB for the infinite horizon that is directly making use
of joint beliefs:

HBQB(b,a) = R(b,a) + γ max
β〈b,a〉

∑

o

P (o|b,a)QB(bao, β〈b,a〉(o)). (4.2)

This is possible, because joint beliefs are still a sufficient statistic in the infinite-horizon
case, as we will show next. After that, in section 4.2, we show that this backup operator is a
contraction mapping.

4Also observe that the inductive proof of 3.1 does not hold in the infinite horizon case.
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4.1 Sufficient statistic

The fact that Q∗
BG is a function over the joint belief space in the finite horizon case implies that

a joint belief is a sufficient statistic of the history of the process. I.e., a joint belief contains
enough information to uniquely predict the maximal achievable cumulative reward from this
point on.

We will show that, also in the infinite-horizon case, a joint belief is a sufficient statistic for a
Dec-POMDP with 1-step delayed communication. Let I t denote the total information at some
time step. Then we can write

It =
(

It−1, ot−1
6=i ,at−1, ot

i

)

, (4.3)

with I0 =
(
b0
)
. I.e., the agent doesn’t forget what he knew, he receives the observations of the

other agents of the previous time step ot−1
6=i , and using this the agent is able to deduce at−1, more-

over he receives its own current observation. Effectively this means that I t =
(

b0, ~θ t−1,at−1, ot
i

)

.

Now we want to show that rather than using I t =
(

b0, ~θ t−1,at−1, ot
i

)

we can also use I t
b =

(
bt−1,at−1, ot

i

)
, without lowering the obtainable value. Following [7], we notice that the belief

update 3.2 implies that bt−1 is a sufficient statistic for the next joint belief bt. Therefore, the rest
of this proof focuses on showing that joint beliefs are also a sufficient statistic for the obtainable
value.

When using It, an individual policy has the form πt
i : ~Θt−1×At−1×Oi → Ai. Alternatively,

we write such a policy as a set of policies for BGs πt
i =

{

β〈~θ t−1,a〉,i

}

〈~θ t−1,a〉
where β〈~θ t−1,a〉,i :

Oi → Ai. When we write π∗ for the optimal joint policy with such a form, the expected optimal
payoff of a particular time step t is given by:

Eπ∗ {R(t)} =
∑

~θ t−1

[
∑

ot

[
∑

s

R(s, β∗

〈~θ t−1,at−1〉
(ot))P (s|~θ t)

]

P (ot|~θ t−1,at−1)

]

︸ ︷︷ ︸

Expectation of the BG for 〈~θ t−1,at−1〉

P (~θ t−1). (4.4)

When using It
b =

(
bt−1,at−1, ot

i

)
as a statistic, the form of policies becomes πt

b,i : B×At−1×Oi →
Ai, where B = P(S) is the set of possible joint beliefs. Again, we also write β〈bt−1,a〉,i.

Now, we need to show that for all t′:

vt′(It′) = Eπ∗

{
∞∑

t=t′

γt−t′R(t)

}

= Eπ∗
b

{
∞∑

t=t′

γt−t′R(t)

}

= vt′(It′

b ) (4.5)

Note that

Eπ∗

{
∞∑

t=t′

γt−t′R(t)

}

=
∞∑

t=t′

γt−t′Eπ∗ {R(t)} (4.6)

and similar for π∗
b . Therefore we only need to show that

∀t=0,1,2,... Eπ∗ {R(t)} = Eπ∗
b
{R(t)} . (4.7)

If we assume that for an arbitrary time step t − 1 the different possible joint beliefs bt−1

corresponding to all ~θ t−1 ∈ ~Θt−1 are a sufficient statistic for the expected reward for time steps
0, ..., t − 1, we can write:

Eπ∗
b
{R(t)} =

∑

bt−1

[
∑

ot

[
∑

s

R(s, β∗
〈bt−1,at−1〉(o

t))bt
ao(s)

]

P (ot|bt
ao(s),at−1)

]

︸ ︷︷ ︸

Expectation of the BG for 〈bt−1,at−1〉

P (bt−1). (4.8)
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Because P (s|~θ t) ≡ P (s|b
~θ t

) = bt
ao(s), where bt

ao(s) is the belief resulting from b
~θ t−1

via

a,o, and P (ot|~θ t−1,at−1) ≡ P (ot|b
~θ t−1

,at−1), we can conclude that also for this time step
Eπ∗ {R(t)} = Eπ∗

b
{R(t)}, meaning that maintaining joint beliefs is a sufficient statistic for time

step t as well. A base case is given at time step 0, because I0 = I0
b =

(
b0
)
. By induction it

follows that joint beliefs are a sufficient statistic for all time steps.

4.2 Contraction mapping

To improve the readability of the formulas, in this section QB is written as simply Q.

Theorem 4.1 The infinite-horizon QBG-backup operator (4.2) is a contraction mapping under
the following supreme norm:

∥
∥Q − Q′

∥
∥ = sup

b

max
a

∣
∣
∣
∣
∣

∑

o

P (o|b,a)
[
Q(bao, βmax(Q)(o)) − Q′(bao, βmax(Q

′)(o))
]

∣
∣
∣
∣
∣
, (4.9)

where

βmax(Q) = arg max
β〈b,a〉

∑

o

P (o|b,a)Q(bao, β〈b,a〉(o)) (4.10)

is the maximizing BG policy according to Q.

Proof We have to prove that

∥
∥HBQ − HBQ′

∥
∥ ≤ γ

∥
∥Q − Q′

∥
∥ . (4.11)

When applying the backup we get:

∥
∥HBQ − HBQ′

∥
∥ =sup

b

max
a

∣
∣
∣
∣
∣

∑

o

P (o|b,a)
[
HBQ(bao, βmax(Q)(o)) − HBQ′(bao, βmax(Q

′)(o))
]

∣
∣
∣
∣
∣

=sup
b

max
a

∣
∣
∣
∣
∣

[
∑

o

P (o|b,a)HBQ(bao, βmax(Q)(o))

]

−

[
∑

o

P (o|b,a)HBQ′(bao, βmax(Q
′)(o))

]∣
∣
∣
∣
∣
. (4.12)

When, without loss of generality, we assume that b, a are the maximizing arguments, and if we
assume that the first part (the summation over HQ) is larger then the second part (that over
HQ′), we can write

∥
∥HBQ − HBQ′

∥
∥ =

∑

o

P (o|b,a)
[
HBQ(bao, βmax(Q)(o)) − HBQ′(bao, βmax(Q

′)(o))
]

(4.13)

If we use βmax(Q) instead of βmax(Q
′) in the last term, we are subtracting less, so we can write

∥
∥HBQ − HBQ′

∥
∥ ≤

∑

o

P (o|b,a)
[
HBQ(bao, βmax(Q)(o)) − HBQ′(bao, βmax(Q)(o))

]
(4.14)
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Now let βmax(Q)(o) = a′, then we get

= γ
∑

o

P (o|b,a)
∑

o′

P (o′|bao,a′)
[

Q(baoa
′o′

, βmax(Q)(o′)) − Q′(baoa′o′
, βmax(Q

′)(o′))
]

≤ γ
∑

o

P (o|b,a) sup
b′

max
a′

∣
∣
∣
∣
∣

∑

o′

P (o′|b′,a′)
[

Q(b′a
′o′

, βmax(Q)(o′)) − Q′(b′a
′o′

, βmax(Q
′)(o′))

]
∣
∣
∣
∣
∣

= γ sup
b′

max
a′

∣
∣
∣
∣
∣

∑

o′

P (o′|b′,a′)
[

Q(b′a
′o′

, βmax(Q)(o′)) − Q′(b′a
′o′

, βmax(Q
′)(o′))

]
∣
∣
∣
∣
∣

= γ
∥
∥Q − Q′

∥
∥ (4.15)

For γ ∈ (0, 1) this is a contraction mapping. �

4.3 Infinite horizon QBG

The fact that (4.2) is a contraction mapping means that there is a fixed point, which is the
optimal infinite horizon QBG-value function Q

∗,∞
B (b,a) [2]. Together with the fact that Q∗

B for
the finite horizon is PWLC, this means we can approximate Q

∗,∞
B (b,a) with arbitrary accuracy

using a PWLC value function.

5 The optimal Dec-POMDP value function Q∗

Here we show that it is not possible to convert the optimal Dec-POMDP Q-value function,

Q∗(~θ t,a), to Q∗(b
~θ t

,a) a similar function over joint beliefs.

Lemma 5.1 The optimal Q∗ value function for a Dec-POMDP, given by:

Q∗(~θ t,a) = R(~θ t,a) +
∑

ot+1

P (ot+1|~θ t,a)Q∗(~θ t+1, π∗(~θ t+1)). (5.1)

generally is not a function over the belief space.

Proof If Q∗ would be a function over the belief space, as in section 3.1, it should hold that
it is not possible that different joint action-observation histories specify different values, while
the underlying joint belief is the same. Following the same argumentation as in section 3.1, it

should hold that if b
~θ t,a

= b
~θ t,b

, it holds that

∑

ot+1

P (ot+1|~θ t,a,a)Q∗(~θ t+1,a, π∗(~θ t+1,a)) =
∑

ot+1

P (ot+1|~θ t,b,a)Q∗(~θ t+1,b, π∗(~θ t+1,b)), (5.2)

given that b
~θ t+1,a

= b
~θ t+1,b

implies Q∗(~θ t+1,a,a) = Q∗(~θ t+1,b,a). Again, the observation proba-
bilities, resulting joint beliefs and thus Q∗(~θ t+1,a)-values are equal. However now, it might be
possible that the optimal policy π∗ specifies different actions at the next time step which would
lead to different future rewards. I.e., for Q∗ to be convertible to a function over joint beliefs,

∀ot+1 π∗(~θ t+1,a) = π∗(~θ t+1,b) (5.3)

should hold if b
~θ t,a

= b
~θ t,b

. This, however, is not provable and we will provide a counter example
using the the horizon 3 dec-tiger problem [4] here. The observations are denoted L=hear tiger
left and R=hear tiger right, the actions are written Li=listen, OL=open left and OR=open
right.
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Consider the following two joint action-observation histories for time step t = 1: ~θ 1,a =

〈(Li, L) , (Li, R)〉 and ~θ 1,b = 〈(Li, R) , (Li, L)〉. For these histories we b
~θ 1,a

= b
~θ 1,b

= 〈0.5, 0.5〉.
Now we consider the future reward for a = 〈Li, Li〉 and o = 〈L, R〉. For this case, the observation
probabilities are equal P (〈L, R〉 |~θ 1,a, Li) = P (〈L, R〉 |~θ 1,b, Li) and the successor joint action-
observation histories ~θ 2,a = 〈(Li, L, Li, L) , (Li, R, Li, R)〉 and ~θ 2,b = 〈(Li, R, Li, L) , (Li, L, Li, R)〉

both specify the same joint belief: b
~θ 2,a

= b
~θ 2,b

= 〈0.5, 0.5〉. However,

π∗(~θ 2,a) = 〈OL, OR〉 6= 〈Li, Li〉 = π∗(~θ 2,b). (5.4)

So even though the induction hypothesis says that

∀a Q∗(~θ t+1,a,a) = Q∗(~θ t+1,b,a), (5.5)

different actions may be selected by π∗ for ~θ t+1,a and ~θ t+2,a and therefore (5.3) and thus (5.2)
are not guaranteed to hold. �
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A Sub-proof of PWLC property

We have to show that the maximizing vector given b is the maximizing vector at b, i.e., that
the following holds:

∀
b
~θ t max

vt
a
∈Vt

a,b
~θ t

vt
a · b

~θ t

= max
vt
a
∈

S

b
~θ t

∈P(S)
Vt

a,b
~θ t

vt
a · b

~θ t

.
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Proof (By contradiction): For an arbitrary b
~θ t

, suppose there is a different joint belief b
~θ t ′

such that
max

vt
a
∈Vt

a,b
~θ t

vt
a · b

~θ t

< max
vt
a
∈Vt

a,b
~θ t ′

vt
a · b

~θ t

.

According to (3.23) and (3.21), this would mean that

max
β〈~θ t,a〉

v
∗,t

b
~θ t

,a,β〈~θ t,a〉
· b

~θ t

< max
β〈~θ t′,a〉

v
∗,t

b
~θ t′

,a,β〈~θ t′,a〉
· b

~θ t

which implies that:

max
β〈~θ t,a〉








Ra +
∑

ot+1








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

∑

st

g
vt+1
a
′

a,o (st)b
~θ t

(st)















· b
~θ t

< max
β〈~θ t′,a〉








Ra +
∑

ot+1








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t′,a〉

∑

st

g
vt+1
a
′

a,o (st)b
~θ t′

(st)















· b
~θ t

Because Ra is the same for both vectors, this means that

max
β〈~θ t,a〉








∑

ot+1








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

g
vt+1
a
′

a,o · b
~θ t














·b

~θ t

< max
β〈~θ t′,a〉








∑

ot+1








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t′,a〉

g
vt+1
a
′

a,o · b
~θ t′














·b

~θ t

thus:

max
β〈~θ t,a〉

∑

ot+1















arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

g
vt+1
a
′

a,o · b
~θ t







· b

~θ t








< max
β〈~θ t′,a〉

∑

ot+1















arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t′,a〉

g
vt+1
a
′

a,o · b
~θ t′







· b

~θ t








,

(A.1)
would have to hold. However, because the possible choices for β〈~θ t,a〉 and β〈~θ t′,a〉 are identical,

we know that Ga,o,β〈~θ t,a〉
= Ga,o,β〈~θ t′,a〉

, and therefore that

∀o








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t,a〉

g
vt+1
a
′

a,o · b
~θ t







· b

~θ t

≥








arg max

g
v
t+1
a
′

a,o ∈G
a,o,β

〈~θ t′,a〉

g
vt+1
a
′

a,o · b
~θ t′







· b

~θ t

,

contradicting (A.1). �
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