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Abstract
Factored Decentralized Partially Observable
Markov Decision Processes (Dec-POMDPs) form
a powerful framework for multiagent planning
under uncertainty, but optimal solutions require a
rigid history-based policy representation. In this
paper we allow inter-agent communication which
turns the problem in a centralized Multiagent
POMDP (MPOMDP). We map subsets of state fac-
tors to an agent’s local actions through a projection
of the factored joint MPOMDP policy. The key
point is that when sparse dependencies between
the agents’ decisions exist, often the belief over
its local state factors is sufficient for an agent to
identify the optimal action, and communication can
be avoided. We formalize these notions using the
linear supports of the MPOMDP value function,
and present experimental results illustrating the
savings in communication that we can obtain.

1 Introduction
Intelligent decision making in real-world scenarios requires
an agent to take into account its limitations in sensing and ac-
tuation. These limitations lead to uncertainty about the state
of environment, as well as how the environment will respond
to performing a certain action. When multiple agents interact
and cooperate in the same environment, the optimal decision-
making problem is particularly challenging. For an agent in
isolation, planning under uncertainty has been studied using
decision-theoretic models like Partially Observable Markov
Decision Processes (POMDPs) [7]. Our focus is on multia-
gent techniques, building on the factoredMultiagent POMDP
model. In this paper, we propose a novel method that exploits
sparse dependencies in such a model in order to reduce the
amount of inter-agent communication.
Themajor source of intractability for optimal Dec-POMDP

solvers is that they typically reason over all possible histo-
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ries of observations other agents can receive, and all possi-
ble actions they might take. This allows for tightly-coupled
optimal solutions, but is not very scalable. In this work, we
consider factored Dec-POMDPs in which communication be-
tween agents is possible, which has already been explored
for non-factored models [13, 14, 16] as well as factored Dec-
MDPs [15]. When agents share their observations at each
time step, the decentralized problem reduces to a centralized
one, known as a Multiagent POMDP (MPOMDP) [13]. Such
centralized solutions are of lower computational complexity,
and they provide an upper bound on the performance achiev-
able by a team of communicating agents [5].
Instead of the rigid history-based plans currently in use, in

this work we take steps in developing a more flexible policy
representation, departing from a MPOMDP solution. Value
functions are a common way to represent plans in decision-
theoretic planning, as they can be used to compute the rela-
tive benefit of taking an action in a particular situation. We
map subsets of state factors to an agent’s local actions through
a projection of the factored MPOMDP solution. Individual
policies map beliefs over these state factors to actions. While
bounded approximations are possible for probabilistic infer-
ence [3], these results do not carry over directly to decision-
making settings (but see [10]). Intuitively, even a small dif-
ference in belief can lead to a different action being taken.
However, when sparse dependencies between the agents’

decisions exist, often the belief over its local state factors is
sufficient for an agent to identify the action that it should take,
and communication can be avoided. We formalize these no-
tions using the linear supports of the MPOMDP value func-
tion, extracting those situations in which communication is
superfluous. This is achieved by determining those regions in
the local belief space which are covered by linear supports as-
sociated with a single action. We present experimental results
showing the savings in communication that we can obtain,
and the overall impact on decision quality.
The rest of the paper is organized as follows. First,

Section 2 introduces a running example that illustrates our
ideas, followed by the necessary background material in
Section 3. Section 4 presents the formalization of project-
ing the MPOMDP value function to subsets of state factors.
Next, Section 5 illustrates the concepts with experimental re-
sults, and Section 6 provides conclusions and discusses future
work.
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Figure 1: Layout of the Relay problem.

2 An Example Problem: Relay
Consider the following small-scale factored Dec-POMDP,
called Relay, which will be used as a running example
throughout the paper. In this environment, two agents operate
inside a four-state world, see Figure 1, in which each agent is
confined to a two-state area. One of the agents possesses a
package which it must hand over to the other agent. The goal
of these agents is then to “relay” this package between them
through the opening between the rooms L1 and R1.
Each agent can either perform action Shuffle, Exchange, or

Sense. A Shuffle action moves the agent randomly, and with
equal probability, to either position in its area. The Exchange
action attempts to perform the physical exchange of the pack-
age between the agents, and is only successful if both agents
are in the correct position (L1 for the first agent, R1 for the
second one) and if both agents perform this action at the same
time. If it succeeds, the world is reset to a random state with
uniform probability. The Sense action is an informative ac-
tion, which allows the agent to sense whether it is in front
of the opening or not, with probability of both false positives
and false negatives. The feature of this small problem that
we are interested in exploring is its sparse dependency be-
tween the decision processes of these agents. Evidently, the
only cooperative action that the agents may perform is a joint
Exchange. Since this action can only succeed in a particular
joint state, it stands to reason that an agent which is suffi-
ciently certain of not being in its correct, corresponding local
state should always attempt to move there first (via Shuffle).
In such a case, this decision can be taken regardless of the
other agent’s state, actions or observations (since the agents
cannot observe each other).
The key idea in our paper is, that in some situations, the lo-

cal information of these agents is enough for them to take lo-
cally optimal decisions. If, furthermore, the belief states over
the local state factors are maintained independently, then the
agents might not need to communicate at all between two de-
cisions. The explicit need to communicate would only arise
in situations where one agent’s optimal action is dependent
upon the other agent’s information. In this example, this cor-
responds to the case where one agent is fairly certain of being
in the correct place for the exchange. It then needs to rea-
son over the other agent’s local belief to make sure that an
Exchange action is profitable in terms of expected reward.

3 Background
In this section we provide the necessary background on fac-
tored Dec-POMDPs and Multiagent POMDPs.

3.1 The Factored Dec-POMDP Model
A factored Dec-POMDP is defined as [11]
• D = {1, ..., n} is the set of agents. Di will be used to
refer to agent i;

• S = ×iXi, i = 1, . . . , nf is the state space for the envi-
ronment, decomposable into nf factorsXi ∈ {1, ...,mi}
which lie inside a finite range of integer values. X =
{X1, . . . ,Xnf

} is the set of all state factors;
• A = ×iAi, i = 1, ..., n is the joint action space. At each
decision step, every agent i takes an individual action
ai ∈ Ai, resulting in the joint action a = 〈a1, ..., an〉 ∈
A. Joint actions are not implicitly known by agents;

• O = ×iOi, i = 1, ..., n is the space of joint observations
o = 〈o1, ..., on〉, where oi ∈ Oi is the observation that
each agent receives after performing an action. An agent
receives only its own observation in this manner;

• T : S × S × A → [0, 1] specifies the transition proba-
bilities Pr (s′|s, a);

• O : O × S × A → [0, 1] specifies the joint observation
probabilities Pr (o|s′, a);

• R : S × A → R specifies the reward that the team
receives for performing action a ∈ A in state s ∈ S;

• b0 ∈ B is a probability distribution over S, representing
the initial knowledge about the joint state. The set B
is the space of all possible distributions over S. We will
refer to the probability of a given state being true as b(s);

• h is the planning horizon, i.e. the total number of deci-
sions that must be taken at each time step t = 1, . . . , h.

The main advantage of factored (Dec-)POMDP models
over their standard formulation lies in their more efficient
representation, which helps counteract the naturally higher
complexity associated with larger space states. In factored
POMDP models, the transition and observation functions can
be compactly represented through graphical representations,
such as DBNs [2], which typically greatly reducing the size
of the associated data structures.
Applying this notation to the Relay example, we can now

further define the action and observation spaces of the agents
as A1 = A2 = {Shuffle,Exchange, Sense}, O1 = O2 =
{Opening,Wall, Idle}, and the trivial state space factoriza-
tion which will be considered, as X1 = {L1,L2} and X2 =
{R1,R2}.
Existing methods for factored Dec-POMDPs can partition

the decision problem across local subsets of agents, due to the
possible (instantaneous) independence between their actions
and observations [11]. Planning is then simplified by maxi-
mizing expected reward accrued additively between local in-
teracting neighborhoods of agents. A natural state-space de-
composition which is often possible in multi-agent teams, is
to perform an agent-wise state space factorization, in which a
state in the environment corresponds to a unique assignment
over the states of individual agents. Note that this does not
preclude the existence of state factors which are common to
multiple agents.



3.2 From Dec-POMDPs to Multiagent POMDPs
Different assumptions over local and joint state observabil-
ity further divide Dec-POMDPs into more restrictive subcat-
egories [5]. In this work, we will consider the general case in
which each factor may be partially observable.
The possibility of exchanging information between agents

also greatly influences the overall complexity of solving a
Dec-POMDP. In the non-communicative case, agents have to
reason over the complete history of actions and observations
of each other team member [1]. However, if agents are all
able to communicate information (namely their observations)
at each step, then it is possible to maintain a belief distribution
over the joint state, which contains all necessary information
through the Markov property. In such a case, the decentral-
ized model can be reduced to a centralized one, the so-called
Multiagent POMDP (MPOMDP) [13]. An MPOMDP is a
regular single-agent POMDP but defined over the joint mod-
els of all agents. In a Dec-POMDP, at each t an agent i knows
only ai and oi, while in an MPOMDP, it is assumed to know
a and o. In the latter case, inter-agent communication is nec-
essary to share the local observations. Solving the MPOMDP
is of a lower complexity class than solving the Dec-POMDP
(PSPACE-Complete vs. NEXP-Complete) [1].

3.3 Linear Supports of POMDP Value Functions
It is well-known that, for a given decision step t, the value
function V t of a POMDP is a piecewise linear, convex func-
tion, which can be represented as [7]

V t(bt) = max
α∈Γt

αT · bt. (1)

Where Γt is a set of vectors (traditionally referred to as α-
vectors). It contains all information which is necessary to
represent the value function at time t. Every α ∈ Γt has a
particular joint action a associated to it, which we will de-
note as ϕ(α). Furthermore, every α-vector which is not ex-
traneous defines a region of belief space over which it is a
strict maximum. This region is a convex polytope with the
constraints:

(α − α′)
T
· bt ≥ 0 ∀α′ )= α ∈ Γt

bt(s) ≥ 0 ∀s ∈ S
∑

s∈S

bt(s) = 1 (2)

We will refer to these regions as the linear supports of V ,
L(α), as illustrated in Figure 2. For more details, see [4].
Furthermore, we shall make use of the joint policy π(b), di-
rectly related to the value function as:

πt(bt) = ϕ

(

argmax
α∈Γt

αT · bt
)

(3)

In this work, our methods will assume that a value function in
the form (1) is given, for its associated fully-communicative
Multiagent POMDP. However, this value function need not
be optimal, nor stationary. Our techniques will attempt to
preserve the quality of the supplied value function, even if it
is just an approximation. The only restriction, and mostly for
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Figure 2: An example of the linear supports for a value func-
tion in a two-state POMDP.

theoretical purposes, is that a supplied value function is in its
so-called parsimonious representation, which means that ev-
ery α ∈ Γ has an associated non-empty linear support L(α).

3.4 Factored Belief States
A joint belief state is a probability distribution over the set of
states S, and encodes all of the information gathered by all
agents in the Dec-POMDP up to a given time t:

bt(s) = Pr(st|at−1,ot−1, at−2,ot−2, . . . , a1,o1, b0)

= Pr(X t
1 , . . . ,X

t
nf
|·) (4)

A factored belief state is a representation of this very same
joint belief as the product of nb assumedly independent belief
states over the state factorsXi, which we will refer to as belief
factors:

bt = ×nb

i=1
btGi

(5)

Every factor btGi
is defined over a subset Gi ⊆ X of state

factors, so that:

bt(s) = Pr(Gt
1|·)Pr(G

t
2|·) · · ·Pr(G

t
nb
|·) (6)

With Gi ∩ Gj = ∅ , ∀i )= j. We will denote BG as the space
of possible assignments to the belief factor defined over G.

4 Exploiting Sparse Dependencies in
Multiagent POMDPs

In the implementation of Multiagent POMDPs, an important
practical issue is raised: since the joint policy arising from the
value function maps joint beliefs to joint actions, all agents
must maintain and update the joint belief equivalently for
their decisions to remain consistent. The amount of commu-
nication required to make this possible can then become prob-
lematically large. In a direct implementation, agents would be
required to communicate, at every step, their observations to
all other agents.
Here, we will deal with a fully-communicative team of

agents, but we will be interested in minimizing the necessary
amount of communication. Even if agents can communicate
with each other freely, they might not need to always do so in
order to act locally, or even cooperatively. A similar idea has
been used for Dec-MDPs [15], where factors can be directly
observed. In that work, joint policies are broken down into
individual factored policies, by reasoning over the possible



local alternative actions to a particular assignment of observ-
able state features. The main difference to the Multiagent
POMDP case lies in the presence of uncertainty over local
features. This idea was approximated at runtime for Multi-
agent POMDPs [14], but with a reasonable loss of control
quality due to the necessary heuristics, and required keeping
track of a rapidly-growing number of joint belief samples.
The main assertion of this work is that, in an MPOMDP,

the necessary information for efficient policy factorization is
already contained within its value function, and can be ob-
tained offline – it simply needs to be properly extracted. We
will describe a method to map a belief factor (or several fac-
tors) directly to a local action.

4.1 Decision-making with factored beliefs
Note that, as fully described in [3], the factorization (6) typi-
cally results in an approximation of the true joint belief, since
it is seldom possible to decouple the dynamics of a MDP
into strictly independent subprocesses. An exception to this
case is the so-called Network Distributed POMDP model,
which assumes full independence between the action and ob-
servation models of the agents (keeping them coupled solely
through the reward model) [8], which allows it to be scaled
to a higher number of agents. In the general case, however,
the dependencies between factors, induced by the transition
and observation model of the joint process, quickly develop
correlations when the horizon of the decision problem is in-
creased, even if these dependencies are sparse. Still, it was
proven in [3] that, if some of these dependencies are broken,
the resulting error (measured as the KL-divergence) of the
factored belief state, with respect to the true joint belief, is
bounded.
Unfortunately, even a small error in the belief state can

lead to different actions being selected, which may signifi-
cantly affect the decision quality of the multiagent team in
some settings [10, 12]. However, in rapidly-mixing processes
(i.e., models with transition functions which quickly propa-
gate uncertainty), the overall negative effect of using this ap-
proximation is minimized.
Each belief factor’s dynamics can be described using a

two-stage Dynamic Bayesian Network (DBN). For an agent
to maintain, at each time step, a set of belief factors, it must
have access to the state factors contained in a particular time
slice of the respective DBNs. This can be accomplished either
through direct observation, when possible, or by requesting
this information from other agents. In the latter case, it may
be necessary to perform additional communication episodes,
besides those which are necessary solely for decision-making
purposes. The amount of data to be communicated in this
case, as well as its frequency, depends largely on the factor-
ization scheme which is selected for a particular problem. We
will not be here concerned with the problem of obtaining a
suitable partition scheme of the joint belief onto its factors
so that the accumulated error, or the implicit communication
requirements, are minimized. Instead we will focus on the
amount of communication which is necessary for the joint
decision-making of the multi-agent team. We assume that
such a partitioning is available, which is typically simple to
identify for multi-agent teams which exhibit sparsity of inter-

action between subsets of agents.

4.2 Formal model
Here, the concepts related to the linear supports of a value
function as introduced in Section 3.3 come into play. We
will hereafter focus on the value function, and its associated
quantities, at a given decision step t, and, for simplicity, we
shall omit this dependency. However, we restate that the value
function does not need to be stationary – for a finite-horizon
problem, the followingmethods can simply be applied for ev-
ery t = 1, . . . , h.
Recall that every α-vector has a joint action associated to

it, ϕ(α), and a linear support over the joint belief state, L(α).
Let Γa = {α ∈ Γ : ϕ(α) = a} represent the set of α-vectors
which share the same joint action, a. Then, we will define the
joint action support of a, Φ(a), as

Φ(a) :=
⋃

α∈Γa

L(α). (7)

Intuitively, Φ(a) represents the (possibly non-connected) re-
gions of joint belief space over which a is the best action, as
mapped by the team’s joint policy, π. Note that, trivially, as
a union of linear supports, action supports preserve the prop-
erties that ∪a∈AΦ(a) = B, and int (Φ(a)) ∩ int (Φ(a′)) =
∅, ∀a, a′ ∈ A : a )= a

′, where int(X) represents the topo-
logical interior of set X . Then, instead of defining π as (3),
we could instead opt to represent it by mapping b through one
of the existing action supports:

π(b) =












a
1 if b ∈ Φ(a1)

a
2 if b ∈ Φ(a2) ∧ b )∈ Φ(a1)

· ·
· ·
a
|A| if b ∈ Φ(a|A|) ∧ b )∈ Φ(a′) ∀a′ )= a

|A|

(8)
Note that the common boundaries of multiple linear supports
are mapped to a single joint action. The same argument
made here can be applied when considering only the actions
of agent Di. Let ϕi(α) denote the local action of agent Di

which corresponds to α, or, equivalently, the i-th component
of ϕ(α). If Γa

i = {α ∈ Γ : ϕi(α) = a}, then

Φi(a) =
⋃

α∈Γa
i

L(α) (9)

represents the action support of action a for agent Di. Using
these sets, we can describe πi(b), the local decision of agent
Di according to b (or the i-th component of π(b)) as in (8).
This way, we can directly map a joint belief to a local action.
A representation of these supports for agent D1 in the Relay
example is shown in Figure 3a. We are now interested in ob-
taining a representation of these supports in local belief space
(i.e., over a belief factor). The marginalization of b onto bG , a
belief factor defined over state factors G ⊆ X , is:.

btG(G
t) = Pr

(

Gt|a1,··· ,t−1,o1,··· ,t−1
)

=
∑

X t\Gt

Pr
(

X t
1 ,X

t
2 , · · · ,X

t
nf
|·
)

=
∑

X t\Gt

bt(st), (10)
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(a) Action supports of agent D1.
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(b) Local supports over belief factor b1(L1).

Figure 3: Relay example. (a) The Φ1(·) of agent D1 over the
4-dimensional joint belief space. The non-represented com-
ponent is associated to a point’s depth inside the tetrahedron.
(b) The local supports ΨX1

over belief factor b1(L1). The
dashed lines separate regions in which b1 belongs to a single
support.

which can be viewed as a projection of b onto the smaller
subspace BG :

bG = MX
G b (11)

whereMX
G is a matrix such thatMX

G (u, v) = 1 if the assign-
ments to the state factors in G are the same in bG(u) and in
b(v), and 0 otherwise. It intuitively carries out the marginal-
ization of points in B onto BG . If we now marginalize over
all points inside a given linear support L(α), we will obtain
a local linear support over belief factor bG . Let us define the
projection operator of a general setX from space B onto sub-
space BG :

PX
G (X) :=

{

bG ∈ BG : bG = MX
G b, ∀b ∈ X ⊆ B

}

(12)

Since L(α) is convex and we are performing the linear
mapping (11), PX

G (L(α)) is also convex. However, it is
no longer true that int

{

PX
G (L(α))

}

∩ int
{

PX
G (L(α′))

}

=
∅, ∀α, α′ ∈ Γ : α )= α′, since different points in B, which
may lie inside different linear supports in joint space, can be
mapped through (12) to the same point in BG .
Despite this, we can still define (possibly overlapping) ac-

tion supports over the space BG , which we will refer to as

local action supports:

ΨG(a) =
⋃

α∈Γa
i

PX
G (L(α)) (13)

4.3 Mapping Belief Factors to Local Actions
Returning to our Relay example, we can see in Figure 3b
how the local action supports are spread over the belief factor
b1, which is defined over G = {X1}. Here we can already
see a remarkable result: some regions of BX1

are covered
only by a single local action support. This implies that, if
b1 ∈ ΨX1

(a) ∧ b1 )∈ ΨX1
(a′) ∀a )= a′, there is no ambiguity

as to what agent D1 should do. Some of its expected behav-
ior is here contained: if the agent has low probability of being
in room L1, then the optimal action is to Shuffle; if it is not
certain enough of being in L1, it should always Sense; and
Exchange is always an ambiguous action, since it depends
on factor X2. Note that, in such a case where b1 belongs to
more than one local action support simultaneously, the logi-
cal thing to do would be to request the belief b2 from agent
D2, and then map its own action, unambiguously, from the
reconstructed joint belief.
Using this insight, we can then redefine the policy of an

agent Di, in a general setting, over some belief factor bG , as
follows:

πi(bG) =

{
ak if bG ∈ ΨG(ak) ∧ bG )∈ ΨG(a′)

∀a′ )= ak, k = 1, . . . , |Ai|
[π(b)]i otherwise

(14)

Where [x]y represents the y-th component of x. Therefore,
we can know through (14) the situations in which it is pos-
sible to map an agent’s belief over a state factor directly to
its own actions. While the exclusion of bG from a local ac-
tion support precludes the possibility of that action being the
correct one, its inclusion in a support does not imply that the
action is a possible choice in joint belief space. Looking back
to the Relay example, some of the values of b1 that map to
both a1 and a3 through the local action supports, may in fact
always map to a1 through Φ1(a1) for all possible values of
b2. This is due to the assumption that it is possible to recon-
struct b = b1 × b2. In fact, the space of possible solutions to
this constraint is itself a subset of B. Some points in joint be-
lief space can remain unreachable, although these points are
also projected to the local belief space, and contribute to the
formation of the local action supports.
A significant drawback in this formulation, in problems

with a large number of factors, is that the full joint belief must
be obtained whenever there is more than one possible action
for a given belief factor. In reality, using (6) we could opt
to map an agent’s actions through a subset of belief factors,
combining an agent’s directly available belief factors with
only a subset of the other agents. To this end, we will now
extend our techniques to the general problem of MPOMDPs
with any number of agents and state factors.

4.4 Generalization to Higher-Dimensional
Problems

Let H be the set of all belief factors, such that b = ×i∈Hbi.
AgentDi will be associated with a subset F ⊆ H, which we



Algorithm 1MapIntersections
(

Di,L,F , F̄
)

1: j ← 0
2: M ← ∅
3: while F̄ is not empty do
4: bF̄ ← remove element from F̄
5: ΨF∪F̄(a) ← ∪

α∈Γa
i

PX
F∪F̄

(L(α)) ∀a ∈ Ai

6: IF∪F̄ ← ∪
a,a′∈Ai

(ΨF∪F̄(a) ∩ ΨF∪F̄(a
′))

7: IF ← PF∪F̄
F (IF∪F̄)

8: Mj ← 〈IF , bF̄〉
9: j ← j + 1
10: end while
11: return M

will refer to as the agent’s local factors. Intuitively, these are
the factors that Di must maintain and update locally at every
step. Analogously, F̄ = H/F represents the set of exter-
nal factors of the joint belief. We are interested in obtaining
a description of the regions of BF over which agent Di can
independently map its local actions. Furthermore, and in ad-
dition to (14), in regions to which more than one action is
associated, we will require an explicit enumeration of factors
in F̄ , which agent Di must request so that this ambiguity is
resolved. So, effectively, we require a mapping of points in
BF to subsets ofH.
When marginalizing over multiple belief factors sequen-

tially, every projection which is carried out may create new
intersections between the action supports, and therefore in-
crease the number of possible actions for a particular assign-
ment of a bF . The following method overcomes the need to
perform an exhaustive search over F̄ for every intersection,
but, it is not guaranteed to return a minimal solution. The ra-
tionale is as follows: starting with a description of the linear
supports L(α) in joint belief space, we first select a single
non-local factor in F̄ , and marginalize each L(α) over it. We
then search for intersections amongst the action supports, in
the resulting lower-dimensional belief space. If such intersec-
tions exist, we project them into BF where we know that the
marginalized, non-local factor is needed (and so must be re-
quested) in order to resolve those intersections. We proceed
to select one of the remaining factors in F̄ to marginalize.
The resulting map of intersections over BF then describes a
set of non-local factors which the respective agent should re-
quest. If its current belief factor does not belong to any of
the sets in that map, then it is guaranteed to be able to select
its own action independently. This procedure is described in
Algorithm 1.

4.5 Computational complexity
We discuss briefly the computational impact of our methods.
As the linear supports L(α) are convex polytopes, they ad-
mit a hyperplane-based representation (an H-representation),
which can be used to efficiently check if a given belief
state lies inside that set. Projecting convex sets onto lower-
dimensional subspaces is an actively studied problem in the
field of computational geometry [6]. In the average case, it
exhibits polynomial complexity in the number of dimensions,

h No Comm. Full Comm. Red. Comm.
6 8.56, 0% 14.55, 100% 14.14, 68.4%
10 - 38.16, 100% 37.61, 65.8%
∞ - 97.20, 100% 94.06, 72.9%

Table 1: Relay problem. For settings assuming no, full, and
reduced communication, we show empirical control quality,
communication usage.

and linear in the number of constraints and in the number of
facets of the projected set. The focus of this paper is not on
the efficient implementation of these operations, but rather
on exploring the possibilities of its application on decision-
making under uncertainty. Note that some long-standing
POMDP solvers tackle with an equivalent problem, namely
the vertex enumeration problem in the original linear support
algorithm [4].

5 Experiments
In this section, we present quantitative results regarding the
application of these methods to the Relay setting. The joint
value function was approximated, for different horizons, us-
ing the Perseus randomized point-based algorithm. The poly-
hedral manipulation involved in the creation and marginal-
ization of the action supports was achieved through the use of
the Multi-Parametric Toolbox for MATLAB [9].
In Table 1, the average accumulated reward is shown,

for different horizons, in the fully-communicativeMPOMDP
case and in the reduced communication case which uses our
method described in Section 4. These results show the mean
of the average reward in the given horizon, over 10, 000
runs, as well as the percentage of time steps in which agents
needed to communicate. The optimal value for the non-
communicative (Dec-POMDP) case is also shown for h = 6,
establishing a lower bound for performance. However, for
larger horizons, no known methods are able to obtain the op-
timal non-communicative value due to computational com-
plexity.
From these results, we see that there is a reduction of 35%

in the number of communication events, when the actions of
the agents are mapped through their respective belief factors.
The effect on the decision quality of using an approximate,
factored belief, is negligible (at most a 3% drop in average re-
ward). We further note that the total savings in the amount of
communication, achievable through the application of these
methods, are directly related to the particular structure of the
problem. On typical multiagent MDP benchmark problems,
which exhibit a high level of interdependency between the
agents, these methods can be applied as a way of analyzing
where those dependencies lie.
In Figure 4, we show a trace of the Kullback-Leibler di-

vergence between the approximate factored belief and a cen-
tralized belief, noting that this error is kept tightly bounded
since the process is rapidly mixing (η = 1

4
, see [10]). This

error only grows when the two belief factors become depen-
dent through the application of a cooperative action. From
this and due to the low loss in average value, it then follows
that, for scenarios where there is sparse interaction between
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Figure 4: The Kullback-Leibler divergence between the fac-
tored belief state estimate and the “true” joint belief state, in
an example run of the Relay problem. The marked timesteps
correspond to the instances in which the agents performed a
successful Exchange.

agents, maintaining a factored belief state is not only effi-
cient communication-wise, but is also an acceptable approx-
imation, in terms of its effect on the overall performance of
the system.

6 Conclusions and Future Work
Traditional multiagent planning on partially observable en-
vironments mostly deals with fully-communicative or non-
communicative situations. For a more realistic scenario
where communication should be used only when necessary,
state-of-the-art methods are only capable of approximating
the optimal policy at run-time [14, 16]. Here, we have ana-
lyzed the properties of MPOMDP models which can be ex-
ploited directly from their formulation, in order to increase
the efficiency of communication between agents. We have
shown that these properties hold, for a simple illustrative sce-
nario, and that the decision quality can be maintained while
significantly reducing the amount of communication, as long
as the dependencies within the model are sparse. We have
also proposed an extension to higher-dimensional problems,
which is, however, subject to an increase in computational
complexity.
Future work will focus on developing new solutions to

overcome the overall computational weight of these methods,
which would allow their application to MPOMDP models of
arbitrary size. Additionally, although one of the main features
of these techniques is that they may be applied to any given
MPOMDP value function in some situations this value func-
tion may be costly to obtain. We will investigate methods for
obtainingMPOMDP value functions that are easy to partition
using our techniques.
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