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ABSTRACT
Decentralized partially observable Markov decision processes
(Dec-POMDPs) provide powerful modeling tools for multi-
agent decision-making in the face of uncertainty, but solving
these models comes at a very high computational cost. Two
avenues for side-stepping the computational burden can be
identified: structured interactions between agents and intra-
agent communication. In this paper, we focus on the inter-
play between these concepts, namely how sparse interactions
reflect in the communication needs. A key insight is that in
domains with local interactions the amount of communica-
tion necessary for successful joint behavior can be heavily
reduced, due to the limited influence between agents. We
exploit this insight by deriving local POMDP models that
optimize each agent’s communication behavior. Our exper-
imental results show that our approach successfully exploits
sparse interactions: we can effectively identify the situations
in which it is beneficial to communicate, as well as trade off
the cost of communication with overall task performance.

1. INTRODUCTION
Decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) provide powerful modeling tools for
multiagent decision-making with limited sensing capabili-
ties in stochastic environments. However, the prohibitive
computational cost required to compute an optimal deci-
sion rule renders them intractable except for the smallest of
problems.1 In the literature, two avenues for side-stepping
the computational burden can be identified: localized in-
teractions between agents [2, 16, 21, 23, 24] and intra-agent
communication [7,18,20,26]. In this paper, we focus on the
interplay between these concepts, namely how sparse inter-
actions reflect in the communication needs.

A key insight is that in domains with local interactions
the amount of communication necessary for successful joint
behavior can be heavily reduced, due to the limited influ-
ence between agents. Several previous works have implicitly
relied on this observation, exploring sparse interactions by
having agents share information locally [11,13,18,21,23]. In
this work, we explicitly reason about the benefits of com-
munication/information sharing in scenarios with sparse in-

1Dec-MDPs are known to be NEXP-complete even in 2-
agent scenarios [4].
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teractions. Sparse interactions enable, to some extent, de-
coupling the decision-process of the different agents. We
leverage such decoupling to derive local models that opti-
mize each agent’s communication behavior, allowing it to
overcome partial observability in those situations where de-
coupled decisions are not possible.

We provide a new way of optimizing communication by
proposing a model in which agents need to plan about when
to query other agents’ local states, which we call Query-

POMDP. We observe that to execute optimal joint policies
in fully observable scenarios—policies which can be com-
puted efficiently—agents will generally need to reason about
the state of other agents. Our agents construct a local
POMDP model of the environment from the fully observ-
able joint policy of all other agents. Solving this POMDP
model allows the agent not only to determine how to solve
the task at hand but also to determine when to query the
local state of the environment. Our approach thus allows
the agents to explicitly reason about communication, with-
out incurring in the prohibitive computational cost of Dec-
POMDP models that include communication [17]. Further-
more, in contrast to many methods in the literature [18,26],
QueryPOMDP can properly handle noisy communication
channels, and does not require strong independence assump-
tions [1]. Our empirical analysis on benchmark problems
demonstrates the efficacy of QueryPOMDP in balancing
communication costs with coordination benefits.

2. BACKGROUND
We start by reviewing decentralized partially observable

Markov decision processes (Dec-POMDPs) and related de-
cision theoretic models. An N-agent Dec-POMDP M is
specified as a tuple M = (N,X , (Ak), (Zk),P, (Ok), r, γ),
where:

• X is the joint state-space;

• A = ×N

i=1Ai is the set of joint actions, with each Ai

the individual action set for agent i, i = 1, . . . , N ;

• Each Zi represents the set of possible local observation
for agent i, i = 1, . . . , N ;

• P(y | x, a) represents the transition probabilities from
joint state x to joint state y when the joint action a is
taken;

• Each Oi(zi | x, a) represents the probability of agent i
making the local observation zi when the joint state is
x and the last joint action taken was a;



• r(x, a) represents the expected reward received by all
agents for taking the joint action a in joint state x;

• The scalar γ is a discount factor.

An N-agent Decentralized Markov decision process (Dec-
MDP) is a particular class of Dec-POMDP in which the state
is jointly fully observable, however, optimal solving of the
model is in the same complexity class as the Dec-POMDP
model. Formally this can be translated into the following
condition: for every joint observation z ∈ Z, with Z =
×N

i=1Zi, there is a state x ∈ X such that

P [X(t) = x | Z(t) = z] = 1,

where X(t) is the joint state of the process at time t and
Z(t) the corresponding joint observation. A partially observ-

able Markov decision process (POMDP) is a 1-agent Dec-
POMDP and a Markov decision process (MDP) is a 1-agent
Dec-MDP. Finally, an N-agent multiagent MDP (MMDP)
is an N-agent Dec-MDP that is fully observable, i.e., for ev-
ery individual observation zi ∈ Zi there is a state x ∈ X
such that

P [X(t) = x | Zi(t) = zi] = 1.

In this partially observable multiagent setting, an individ-
ual (non-Markov) policy for agent i is a mapping

πi : Hi −→ ∆(Ai),

where ∆(Ai) is the space of probability distributions over
Ai, and Hi is the set of all possible finite histories for agent
i. The purpose of all agents is to determine a joint policy
π that maximizes the total sum of discounted rewards. In
other words, considering a distinguished initial state x0 ∈ X
that is assumed common knowledge among all agents, the
goal of the agents is to maximize

V
π = Eπ

[

∞
∑

t=0

γ
t
r
(

X(t), A(t)
)

| X(0) = x
0

]

. (1)

For a more detailed introduction to Dec-POMDPs and re-
lated models see, e.g., [19].

3. A MOTIVATING EXAMPLE
We motivate our ideas in a simple navigation scenario,

corresponding to the environment depicted in Fig. 1. In this
scenario, two robots (Robot 1 and Robot 2) must navigate
to their corresponding goal states (marked as Goals 1 and
2). At the same time, they must avoid colliding in the nar-
row doorway (the central state), since it leads to a large
penalty. Each robot has 4 possible actions (namely “Move
North”, “Move South”, “Move East” and “Move West”) that
move the robot in the corresponding direction. The motion
of one robot does not depend on the position or action of
the other robot except in the doorway: if the robots collide
in the doorway, then their actions have an increasing fail-
ure probability. Complicating matters, initially each robot
starts uniformly at random in one of the 10 locations on its
side of the doorway.

In a fully observable situation, the agents will move toward
their respective goals. When reaching the doorway, if the
other robot is also close to the doorway one of the two will

Robot 1 Robot 2

Goal 1Goal 2

Doorway

Figure 1: H-Environment, where two robots need to
interact only around the narrow doorway to reach
their corresponding goals. The shaded arrows corre-
spond to a possible policy for Robot 2 in the absence
of Robot 1.

stop so that the other can safely traverse.2 It will then
resume its trajectory to its goal.

In order for the agents to actually execute the policy just
described, they only need to reason about the state of the
other agent when reaching the darker area in their starting
side of the environment. And then, once one robot is in the
doorway, it can just proceed toward its goal, independently
of the state of the other robot. Moreover, even if the robots
are generally unable to observe the position of the other
robot, but they are able to query it, they can reasonably
assume that the other robot will behave more or less as in the
fully observable scenario. This observation is the departing
point for the model and approach proposed in this paper
and described in the continuation.

4. A MODEL FOR STATE QUERYING
We depart from an N-agent Dec-MDP model, and ad-

dress the problem of when communication can be benefi-
cial to improve the performance in such a model. For the
purposes of our study, we momentarily focus on the deci-
sion processes of all except one agent, which we refer to
as agent k. Unlike other communication-based approaches
to Dec-POMDPs (e.g., [18, 27]), we adopt a relatively gen-
eral communication model, in which the messages received
by an agent are taken as part of its local (noisy) observa-
tion. Also, messages received by agent k depend on explicit
information-querying actions executed by k.

Throughout this section, we represent the (finite) state-
space of the Dec-MDP as a set X and assume that it can be
factorized as X = Xk × X−k, where the elements xk ∈ Xk

correspond to agent k’s local state. The state at time t,
X(t), is thus a pair 〈Xk(t), X−k(t)〉. We also assume that
the observations of each agent do not depend on the actions
of the remaining agents, i.e.,

P [Zi(t) = zi | X(t), A(t)] = P [Zi(t) = zi | X(t), Ai(t)] ,

for all i = 1, . . . , N . Therefore, we can simply write the
observation probabilities as Oi(zi | x, ai), i = 1, . . . , N .

2Which one stops is determined by the joint policy they
adopt.



4.1 Query Actions and Observations
For the purpose of allowing our agent to reason about

communication, we assume that each agent has the ability
to query the other agents for their local state information.
In order to make this explicit, we differentiate between com-

munication actions and the remaining actions—henceforth
referred as primitive actions, and write the set of individ-
ual actions for agent k as the cartesian product of the set of
communication actions, AC

k , and the set of primitive actions,
AP

k , i.e., Ak = AC

k × AP

k . We also assume that transition
probabilities are independent of the communication actions,

P(y | x, 〈a−k, (a
C

k , a
P

k )〉) = P(y | x, 〈a−k, (b
C

k , a
P

k )〉)

for any x, y ∈ X , a−k ∈ A−k, a
P

k ∈ AP

k and aC

k , b
C

k ∈ AC

k .
We also differentiate between communication observations

(i.e., observations that result from communication actions)
and primitive observations, that do not depend on the com-
munication actions. Formally, we write the set of individual
observations for agent k as the cartesian product of the set
of communication observations, ZC

k , and primitive observa-
tions, ZP

k , i.e., Zk = ZC

k ×ZP

k . We consider that communi-
cation observations do not depend on primitive actions, and
that primitive observations do not depend on communica-
tion actions. This means that we can decouple the observa-
tion probabilities as

Ok

(

(zC
k
, zP

k
) | x, (aC

k
, aP

k
)
)

= O
C

k
(zC

k
| x, aC

k
)OP

k
(zP

k
| x, aP

k
),

where

O
C

k
(zC

k
| x, aC

k
) = P

[

ZC

k
(t) = zC

k
| X(t) = x,AC

k
(t) = aC

k

]

O
P

k
(zP

k
| x, aP

k
) = P

[

ZP

k
(t) = zP

k
| X(t) = x,AP

k
(t) = aP

k

]

.

Finally, we assume that the reward function can also be
decomposed as the sum of two components. The first com-
ponent, denoted rC , concerns the cost of communication and
is independent on the primitive actions of agent k and on
the actions of the other agents. The second component, de-
noted as rP corresponds to the “regular” (or domain-level)
reward defining the overall goal of the agents. It is assumed
independent of the communication actions of agent k. For-
mally, if a = 〈a−k, ak〉 and ak = (aC

k , a
P

k ), this means that
the reward r can be written as

r(x, a) = r
P (x, 〈a−k, a

P

k 〉) + r
C(x, aC

k ). (2)

Figure 2 depicts a dynamic Bayesian network that summa-
rizes all above considerations.

Following the discussion in Section 3, and for the pur-
pose of its planning process, agent k will treat all remaining
agents as if they follow a Markov policy, π−k, that corre-
sponds to the optimal policy for the underlying MMDP. This
policy, being Markovian, depends only on the state of the
system at time t, X(t), i.e.,

P [A−k(t) = a−k | H(t)]

= P [A−k(t) = a−k | X(t) = x] = π−k(x, a−k),
(3)

where A−k(t) denotes the action taken by all agents other
than k at time t, H(t) denotes the whole history of the
process up to time t and a−k ∈ A−k. From this perspective,
the decision process for agent k can be modeled as a (single-
agent) POMDP that we describe in the next section.
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Figure 2: The factored decision model, from agent
k’s perspective.

4.2 POMDP Model for a Single Agent
Let M = (N,X , (Ak), (Zk),P, (Ok), r, γ) be a Dec-MDP

that meets the above assumptions. Let π−k denote the
(state-dependent) joint MMDP policy for all agents other
than k. The single-agent POMDP model for agent k is a
tuple Mk = (X ,Ak,Zk,Pk,Ok, rk, γ), where:

• X corresponds to the original Dec-MDP state-space.

• Ak is the individual action-space for agent k.

• Zk is the individual observation-space for agent k.

• Pk are the transition probabilities obtained from the
original transition probabilities. In particular, given
an action ak = (aC

k , a
P

k ), we have

Pk(y | x, ak) =
∑

a
−k∈A

−k

π−k(x, a−k)P(y | x, 〈a−k, a
P

k 〉).

• Ok are the observation probabilities for agent k, that
match the original Dec-MDP observation probabilities.
In particular, given an action ak = (aC

k , a
P

k ), we have

Ok(zk | x, ak) = O
C

k (z
C

k | x, aC

k )O
P

k (z
P

k | x, aP

k ), (4)

where zk = (zCk , zPk ).

• rk is the reward function obtained from the original
Dec-MDP reward function after averaging over the
other agents’ policy, π−k, i.e.,

rk(x, ak) =
∑

a
−k∈A

−k

π−k(x, a−k)r(x, 〈a−k, ak〉).

Given this POMDP model, we can use standard POMDP
solution techniques to explore the trade-off between the costs
and benefits of communication for agent k.

4.3 Results for the H-environment Example
Continuing the example of Section 3, the application of

our model allows us to better understand under which cir-
cumstances the benefits of using communication compensate
for its costs. For this purpose, we fix the policy of Agent 2
as shown in Fig. 1, which corresponds one possible joint
MMDP policy for this environment. As explained above,
given such a policy we can construct a POMDP from the
point of view of Agent 1, in which it can query Agent 2’s
states at any time step, at a particular communication cost.
For illustration purposes, the initial state of Agent 2 is se-
lected randomly on the right half of the environment. We
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Figure 3: Results for the H-environment. (a)-(d)
Query frequency in each state for Agent 1, varying in
deterministic (Det. P) or noisy (Noisy P) transitions
and communication cost.

test several experimental conditions that include the pres-
ence or absence of transition noise and different costs for the
communication actions.

We examine in which states Agent 1 queries Agent 2’s
state. When communication is free (Figs. 3(a) and (b)),
Agent 1 queries in all the states it passes through.3 With
a communication cost of 0.3 (Fig. 3(d)), however, it only
queries when near to and left of the doorway. In these states
it is crucial to know Agent 2’s location to avoid potential
collisions, an intuition that is exploited automatically by
our model.

The use of a POMDP model in this context ensures that
the agent explicitly reasons about information gathering ac-
tions which, in our setting, translates in weighting the ben-
efits of communication in terms of the overall task against
the costs associated with it. It is also worth noting that
the optimal communication policy depends on the commu-
nication costs, on the task at hand, the transition model,
and the query model (i.e., the observation probabilities as-
sociated with the query actions). The planning framework
proposed takes into consideration all these aspects, and the
right trade-off between communication costs and benefits
comes out as a natural outcome of the policy computed by
the agent.

4.4 Computing Policies for Multiple Agents
In the previous section we proposed using a POMDPmodel

to compute the policy for one agent k, treating all other
agents as if they were following the optimal joint policy

3We note that, due to the transition noise, an agent can
remain in the same state more than one consecutive time-
step, and hence the values larger than 1.

for the underlying MMDP. Given this POMDP model for
agent k we can compute the corresponding optimal policy
using any preferred POMDP solution technique. We use this
approach to better understand the communication needs of
one agent in a simple multiagent navigation scenario, and
to determine in which situations the cost of communication
outweighs its value.

We now want to extend these ideas and actually compute
the policy for all agents in the Dec-MDP. The idea of using
POMDP models to plan in multiagent scenarios has been
previously explored in the Dec-POMDP literature [6, 14].
The general difficulty with these approaches arises from the
fact that each agent has only a local observation of the joint
state of the world. This implies that, when planning for
agent k, the POMDP model necessary to properly capture
the behavior of all agents other than k can either be pro-
hibitively large, require agent k to reason about how the
other agents reason about agent k’s state, leading to in-
finitely nested beliefs, or both [6,14].

In our approach, we rely on the intuition discussed in Sec-
tion 3, according to which the use of active communication

allied with sparse interactions may actually alleviate the
difficulties associated with planning in multiagent systems
with partial observability. We plan for each agent k while
treating all other agents as if following the optimal joint

MMDP policy. In scenarios where interactions are sparse,
the general behavior of the agents is expected to roughly
follow the MMDP policy, as discussed in Section 3 and in
those situations where coordination is necessary, agents can
resort to communication, but weighting the benefits of such
communication with the associated costs.

Several previous works have already studied the benefits of
exploiting communication and structured interactions sepa-
rately (see, for example, [7, 21, 24]).4 The novelty in our
approach lies precisely on the fact that we can explicitly
exploit the interplay between these two aspects (communi-
cation and sparse interactions) to attain efficient planning
in multiagent problems. Section 5 describes the application
of our approach in several navigation scenarios of different
dimensions. Our results empirically show that our approach
is indeed able to make effective use of communication and
attain a performance that indeed approaches that observed
in fully observable settings.

5. EXPERIMENTS
In this section we illustrate the application of our method

to several navigation scenarios from the POMDP and Dec-
POMDP literature. We use robot navigation scenarios (see
Fig. 4), since our model is particularly suited for modeling
multi-robot problems. Furthermore, results can be easily
visualized and interpreted in this class of problems. We
consider only two-agent scenarios for ease of interpretation
although, as argued, our approach can be used with any
number of agents. Moreover, for our purposes (i.e., investi-
gating how the proposed use of communication can allevi-
ate the computational burden of solving Dec-MDPs), two-
agent scenarios are already illustrative, as they are NEXP-
complete [4].

4We refer to Section 6 for a detailed discussion of related
approaches.
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Figure 4: Environments used in the experiments.

Experimental Setup
In each of the test scenarios, two robots must each reach one
specific state, marked either by a boxed number or a cross,
×. Each robot has 4 actions that move the robot in one
of the four possible direction with probability 0.8 and fail
with probability 0.2, plus a fifth “NoOp” action. As for the
communication model, the agent’s query actions will pro-
vide the local state of the other agent with probability 0.8
in the shaded areas. With a probability 0.2, communication
will fail and the query action will provide no observation.
Outside the shaded areas, the query actions always yield no
communication. Since the communication model is available
to the agents, planning takes into consideration communi-
cation limitations.5

The darker cells correspond to states where the agents
receive a penalty of−20 when standing there simultaneously,
in which case the rate of action failure is also increased to
0.4 for both agents.

All agents have full local state observability. When an
agent queries another agent, it incurs a cost of −0.1 and, in
the shaded areas, successfully observes the local state of the
queried agent with a probability of 0.8. With a probability
of 0.2 it receives no observation about the state of the other.
In the white cells, an agent is never able to perceive the state
of the other, but still incurs a penalty of −0.1 if it attempts
to communicate. When an agent reaches its goal position, it
receives a reward of 10 and moves to a rewardless absorbing
state. Throughout the experiments, we used γ = 0.95.

For each of the test scenarios, following the approach in
Section 4, we compute the optimal MMDP joint policy that
we use to determine a POMDPmodel describing the decision

5We note that, although for the experimental results we con-
sider a relatively simple communication model, it already
includes state-dependent noise in the resulting observations.
Generally, the framework accommodates for arbitrary com-
munication models.

Table 1: Main differences between the groups of
agents used.

Agents
Comm. Succ. Failed

Freq. Comm. Comm.

QueryPOMDP Variable POMDP POMDP
Never Comm Never − Indiv. MDP
Always Comm 1 step MMDP Indiv. MDP
Comm k = 2 2 steps MMDP Indiv. MDP
Comm k = 3 3 steps MMDP Indiv. MDP
Comm k = 4 4 steps MMDP Indiv. MDP

process for each individual agent. This POMDP is then
solved using the Perseus approximate solver [22]. We test
our QueryPOMDP policy for 100 independent trials of 250
steps each and measure the obtained performance in terms
of total discounted reward. We also test the performance
of other sets of agents that communicate at different (but
fixed) frequencies (see Table 1):

• “Never Comm” agents never communicate. These
agents observe only their local state, and each fol-
lows the optimal policy for the underlying single-agent
MDP obtained by disregarding the other agent in the
environment;

• “Always Comm” agents communicate at every time-

step, incurring the corresponding penalty. As Query-

POMDP agents, they are subject to communication
errors/limitations and, as such, are not always able to
perceive the state of the other agent. When commu-
nication fails, the agent observes only its local state
and adopts the individual MDP policy. When com-
munication succeeds, it adopts the underlying MMDP
policy.



Table 2: Total discounted reward for each set of agents in each of the test-scenarios. Entries in italic in the
same column are not statistically different.

Environment map 1 map 2 map 3 cit isr mit pent. suny

mmdp 5.787 5.253 6.608 5 .305 6 .817 3.182 7.606 5 .297

QueryPOMDP 5.132 3.598 6.156 5 .260 6 .755 2 .964 6.444 5 .328

Never Comm −1.834 0.900 1.917 5 .306 6.663 2 .959 5.641 5 .283
Always Comm 1.961 2.248 3.276 3.286 4.779 1.116 5.038 3.297

Comm k = 2 −0.069 1.097 3.001 4.306 5.839 2.141 5.578 4.294
Comm k = 3 −0.127 1.707 1.564 4.666 6.114 2.426 5.246 4.646
Comm k = 4 −0.785 1.289 3.295 4.324 5.760 2.106 5.448 4.317

• “Comm k = 2, 3, 4” agents query the state of the other
agent every k steps. Except for the different commu-
nication frequency, they are otherwise similar to “Al-

ways Comm” agents.

Comparisons between these different agents will allow us to
analyze (i) the impact that communication costs can have
on performance, if communication is not optimized; and (ii)
the impact that communication can have in mitigating par-
tial observability. Comparing directly against other methods
such as the one of Roth et al. [18] would not be very infor-
mative, as they do not attempt to trade off communication
costs with task performance.

Results and Discussion
The performance of the 6 agent groups in terms of total
discounted reward is summarized in Table 2. As a reference
against which to assess the quality of our computed policy
we also provide the results for the MMDP optimal policy in
the different environments, providing a performance upper
bound [15]. The QueryPOMDP approach performs very
favorably, outperforming all other policies and coming close
to the MMDP upper bound in several of the tested scenarios.

The results in Table 2 prompt several interesting observa-
tions. First, comparing the performance of the MMDP pol-
icy against that of the group that never communicates pro-
vides an important indication of how critical coordination
is in a given scenario. NeverComm agents act individually,
disregarding the existence of other agents in the environ-
ment. In environments where coordination is critical, Nev-

erComm agents will perform poorly. MMDP agents, on the
other hand, always act in a perfectly coordinated manner,
in which coordination does not come at a cost. In an envi-
ronment where little coordination is needed, the difference
between these two groups is going to be small. In contrast,
scenarios that require significant coordination will cause the
performance of the two groups to significantly differ.

From Table 2, we can see that coordination is critical in
the smaller environments (Maps 1-3). In the larger environ-
ments, such as cit, mit and suny, coordination is less crit-
ical. The results in the smaller environments illustrate the
impact of effective communication in mitigating the effects of
partial observability. Our method is actually able to attain
a performance very close to that of the MMDP agents, even
paying for communication. Additionally, our approach uses
communication efficiently, since the performance of all other
communicating agents is significantly inferior. In contrast,
in cit, mit and suny, non-communicating agents actually
attain optimal performance. The difference in performance
to the communicating groups can be explained by the com-

munication penalty. Again, in these scenarios, our approach
is able to effectively manage communication needs, as it per-
forms similarly to non-communicating agents.

A second observation is that the MMDP performance is an
upper bound on the optimal Dec-MDP performance. This
means that in those scenarios where our approach performs
close to or as well as the MMDP group, we can immediately
conclude that it is also performing close to or as well as
the optimal Dec-MDP policy. A general comparison of the
performance of our method against that of the MMDP group
indicates that our method, if not optimal, must be very close
to optimal in most scenarios tested. This, in turn, indicates
that approximating the behavior of our agents with that of
MMDP agents does provide a solid basis for planning.

Summarizing, our results show that, in scenarios with
sparse interactions like the ones analyzed, our agents behave
approximately as MMDP agents, effectively using commu-
nication to mitigate the effects of partial observability.

6. RELATED WORK
In the Dec-POMDP literature, early approaches intro-

duced the idea of transition and reward independence as
forms of simplified interactions [3]. Further examples of
models with sparse interactions include interaction-driven

Markov games [11, 21], distributed POMDPs with coordina-

tion locales [23], transition-decoupled POMDPs [24], factored
Dec-POMDPs [16], and models relying on event-driven in-
teractions [2].

Our representation is closest to interaction-driven Markov
games (IDMGs) [11, 21]. This model leverages the inde-
pendence between the different agents in a Dec-POMDP to
decouple the decision process in significant portions of the
joint state-space. In those situations in which the agents
interact, IDMGs rely on communication to bring down the
the computational complexity of the joint decision process.
The use of communication to overcome partial observabil-
ity differentiates this approach from other approaches that
also exploit local interactions among the agents. However,
communication is assumed to always take place and to be
error-free [21]. In our case, we add explicit query actions to
each agent’s action repertoire, enabling it to query another
agent’s state, subject to certain constraints. For instance,
two robots may only be able to share information when they
are physically close. Furthermore, we assume that commu-
nication is subject to errors and comes at a cost that must
be considered.

Explicit communication in multiagent planning was al-
ready addressed in [17], where the proposed Com-MTDP
model allows agents to explicitly reason about communica-



tion in Dec-POMDP scenarios. However, being a generaliza-
tion of Dec-POMDPs, it shares the discouraging computa-
tional complexity of the latter model. The actual process of
communication has been investigated in [8]. Roth et al. [18]
propose to exploit a factored Dec-MDP model and policy
representation, in which agents query other agents’ local
states when this knowledge is required for choosing their
local actions. Although this work already seeks to optimize
communication, this optimization is conducted parallel with
the underlying decision process. Therefore, the cost of com-
munication does not directly translate in the agent’s task
performance, as in our proposed approach, rendering the
tradeoff between communication costs and benefits unclear.
Another closely related work is that of Wu et al. [26] where
communication is used as a means to decrease the planning
complexity in Dec-POMDP models. Like in our proposed
approach, this work considers that communication may not
always be available. However, unlike our approach, this work
does not consider explicitly optimization of communication.
Finally, Mostafa and Lesser [13] do optimize communication,
while considering the presence of communication limitations.
However, this optimization is also conducted parallel with
the underlying decision process, without directly impacting
in the agent’s task performance. Also, none of the aforemen-
tioned methods considers noisy communication channels.

A key point in our approach is that, although we use the
MMDP policy in our planning, its computation is signifi-
cantly more efficient than computing a centralized policy for
the actual partially observable decision problem. The fact
that we plan individually for each agent is somewhat re-
lated to several works that use round-robin policy optimiza-
tion to individually optimize the policy of different agents
in Dec-POMDP settings. One of the early examples is the
JESP algorithm [14], which also models agents individually
as POMDPs, but does not use communication. Round-robin
policy optimization has been used to learn communication
primitives in Dec-POMDPs whose base models are transi-
tion and observation independent [20], but which are cou-
pled through the communication actions agents can choose
to execute. In that case, however, agents have to learn when
sending a particular message will be beneficial for team per-
formance, which is far from trivial given that the policy of
the receiving agent does not exploit the information pro-
vided by incoming messages. In our case, however, agents
can opt to query other agents’ states, and it is much easier
to determine when doing so improves performance. Sec-
ondly, we consider a much richer model where agents also
“physically” influence each other, instead of only through
communication.

7. CONCLUSIONS
In this paper, we analyzed the interplay between sparse

interactions and communication in multiagent planning. We
observed that, in scenarios where interactions among agents
are sparse (i.e., intra-agent action coordination is only infre-
quently necessary), the distributed execution of an MMDP
policy seldom requires full-state information. As such, if
each agent is (individually) allowed to query other agents
for their local state information when necessary, it may be
possible to partly mitigate partial state observability and
leverage more efficient planning approaches.

Relying on this insight, we proposed the use of a POMDP
model to analyze the communication needs of an agent in a

Dec-MDP scenario where the interaction between the agents
is sparse. Our model accommodates communication costs
and failures—the agent must explicitly reason about these
factors in its decision process. QueryPOMDP allows agents
to optimize communication, explicitly trading-off its costs
with its benefits in terms of the underlying task.

We used our approach to optimize communication in the
simple scenario of Fig. 1, where our approach was success-
fully able to capture the intuition that the fundamental
states for coordination are those around the doorway. We
further explored the usefulness of this approach in comput-
ing policies for larger and more general Dec-MDPs. We built
POMDP models for each agent by considering the other
agents to behave as if in an MMDP, and use the obtained
POMDP optimal policies. Our results show that our agents
are able to effectively using communication to mitigate the
effects of partial observability, behaving approximately as
MMDP agents.

This work raises several interesting research questions.
First of all, it would be interesting to generalize these tech-
niques beyond Dec-MDPs, accommodating scenarios in which
agents can query other agents’ observations instead of states.
Another important issue is that, currently, we assume that
the query observation model is known. While this assump-
tion may be reasonable in a planning setting, the perfor-
mance of the QueryPOMDP agents is critically dependent
on its communication capabilities. Therefore, if the agent
designer is given the possibility of enabling communication
in critical situations, how could these be computed? Early
works [5,9,10] proposed methods that allow agents to auto-
matically learn where information about others may be use-
ful. A more recent method proposed the use of constrained
optimization to explicitly determine when communication
can be used to construct informative local beliefs [12]. An
interesting avenue for future work is the extension of such
approaches to the QueryPOMDP setting.

Finally, one other important aspect that will be explored
in future work is the extent to which sparsity of interaction
affects the optimality of our planning approach. In fact,
while our results indicate that our approach is able to ef-
fectively leverage the particular structure that may exist in
multiagent settings, it is not clear how the performance of
our approach depends on the sparsity of interactions. In
fact, our method leverages such existing structure only im-
plicitly. Characterizations such as the one in [25] may pro-
vide insights into which situations can be successfully ad-
dressed using our approach.
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