WTE-MAC: Wakeup Time Estimation MAC for Improving End-To-End Delay Performance in WSN

Jae-Ho Lee, Kyeong Hur, Doo-Seop Eom
The 2011 Military Communications Conference (MILCOM), pp.902-907, 7-10 Nov. 2011

João Crespo, Signal and Information Processing Lab (SIPL), Department of Intelligent Systems, TU Delft
Summary

• Motivation

• Previous Schemes: B-MAC, X-MAC

• Proposed Enhancement: Synchronization at the Neighbor's Duty Cycle (SND)

• Proposed Enhancement: Virtual Tunnels (VT)

• Simulations

• Conclusions
Motivation

• Applications
 • Event monitoring
 • Military intrusion detection
• Very light traffic scenario
• Bursty traffic when it occurs

• Requirements
 • Very low power consumption (long operation time)
 • Low end-to-end delay on event

Source: http://www.agentvi.com/21-Solutions-74-Critical_Infrastructure_Govt
Motivation

- Energy efficiency important
- Contention-based protocols
- Duty cycling

<table>
<thead>
<tr>
<th>Synchronous CB protocols</th>
<th>Asynchronous CB protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-MAC, T-MAC</td>
<td>B-MAC, X-MAC</td>
</tr>
<tr>
<td>• Duty cycle's phase synchronized</td>
<td>• Nodes not aware of duty cycle's phase of other nodes</td>
</tr>
<tr>
<td>• Control packets for synchronization (SYNC)</td>
<td>• No synchronization overhead</td>
</tr>
<tr>
<td>• Less energy efficient</td>
<td>• Best energy efficiency</td>
</tr>
<tr>
<td>• Low end-to-end delay</td>
<td>• But: high end-to-end delay</td>
</tr>
</tbody>
</table>

• Lee et al.: can we join the best of both worlds?
Problem Statement and Approach

• Develop contention-based MAC algorithm having
 • Low power consumption
 • Low end-to-end delay

• Low power consumption achieved by basing proposed algorithm on an asynchronous algorithm (X-MAC)
 • No SYNC packets overhead

• Low end-to-end delay achieved by
 • Using the asynchronous algorithm's packets themselves (preambles) for synchronization – SND
 • Creating virtual connections for transmitting data bursts – VT
Previous Schemes: B-MAC, X-MAC

B-MAC
- Preamble sampling

X-MAC
- Short Preamble sampling
- Early ACK

Synchronization at the Neighbor's Duty Cycle (SND)

• Basic scheme works just like X-MAC
 • Short preamble sampling
 • Early ACK

• Short preambles contain synchronization information
 • Retransmission Interval (RI)
 • Retransmission Count (RC)
 • Duty Cycle Duration (DD)

• Receiver estimates duty cycle phase from this information and thereby synchronizes to sender
 • Neighbors get synchronized after data transmission
Synchronization at the Neighbor's Duty Cycle (SND)
Virtual Tunnel (VT)

- Designed for efficient transmission while
 - Data is sporadic and in bursts
 - Transfers are multi-hop
- Circuit established from source to destination
 - Uses ACK packets for establishing circuit without overhead
 - Forwarding is not changed while circuit is present
 - Circuit released after burst

- Scheme reduces end-to-end delay
Virtual Tunnel (VT)

- All nodes synchronize to the same original transmitter (node C)
- RC count keeps increasing through hops
- Every node compensates for synchronization mismatches caused by ACK packets
Simulations

- Networks

- Routing: AODV (grid), flooding (linear)

- Interference, CCA, communication range
 - 680 meters, 280 meters, 200 meters

Source: http://www.st.ewi.tudelft.nl/~koen/wnsn/2012/lecture2.pdf
Simulations

- Grid network
- End-to-end delay reduced w.r.t X-MAC
 - Due to synchronization with the VT mechanism
 - More significant on longer distance (multi-hop) and higher bitrate communication
- Energy consumption reduced w.r.t. X-MAC
 - Less short preamble transmissions and idle listening

(a) End-to-end latency as hop (Grid)
(b) End-to-end latency as traffic (Grid)
(c) Energy consumption as traffic (Grid)
Simulations

- Linear network
- Similar picture
- Slightly better performance due to lower neighboring interference
Conclusions

• Proposed enhancements for an asynchronous contention-based MAC protocol for Wireless Sensor Networks (X-MAC)

• Low end-to-end delay without SYNC overhead (synchronous protocols)

• Keeps (even improves) low power consumption of asynchronous protocols

• Virtual Tunnels for bursty traffic

• Applications: event monitoring, military intrusion
Conclusions

• Other approaches achieving low power, low delay

• Wireless Sensor MAC (WiseMAC) (El-Hoiydi et. al)
 • Preamble sampling, no early ACKs (listening feedback)
 • Sender learns timing from receiver through (data) ACKs
 • SND: receiver learns timing from sender through preambles
 • Bursts through 'frame pending bit'

• Opportunistic Routing in WSN (Landsiedel et. al.)
 • Anycast routing (many potential receivers)
 • Consensus protocol for choosing forwarder
Questions