
Dynamic Voltage Scaling on a Low-Power Microprocessor

Johan Pouwelse
�

Koen Langendoen Henk Sips
Faculty of Information Technology and Systems
Delft University of Technology, The Netherlands

fpouw else,koen,sipsg@ubicom.tudelft.nl

ABSTRACT
P ow er consumption is the limiting factor for the functional-
ity of future wearable devices. Since in teractiv e applications
like wireless information access generate bursts of activities,
it is important to match the performance of the wearable
device accordingly. This paper describes a system with a
microprocessor whose speed can be varied (frequency scal-
ing) as well as its supply voltage. V oltage scaling is im-
portan t for reducing pow er consumption to very low values
when operating at low speeds. Measurements show that the
energy per instruction at minimal speed is 1/5 of the energy
required at full speed. The frequency and voltage can be
scaled dynamically from user space in only 140 �s. This
allows pow er-aw are applications to quickly adjust the perfor-
mance level of the processor whenever the workload changes.
Experiments with an H.263 video benchmark show that the
power-aware decoder outperforms a static �xed-frequency
policy as well as a dynamic interval-based sc heduler.

1. INTRODUCTION
Today's bulky portable computers will be replaced by

small wearable devices in the near future. Wearable devices
introduce several challenges that go beyond those of the tra-
ditional computing model. The goal for the next-generation
w earable devices is to extend the services beyond mere voice,
address book, e-mail, and limited computation [1]. As an ex-
ample, the Ubiquitous Communications (UbiCom) project
at Delft University of Technology aims at developing a wear-
able device equipped with a long-range 10 Mbps wireless link
and an augmented-realit y displa y [10].
P ow erconsumption is becoming the limiting factor for

the functionality of w earable devices, because adv ances in
battery technology are progressing slowly whereas compu-
tation and communication demands are increasing rapidly.
It is important to utilize the available energy as eÆcient as
possible. Energy preserv ation, or energy management, is

�Supported by the Dutch Organization for Applied Scienti�c
Researc h (TNO), Physics and Electronics Laboratory.

.

further translated into a low pow er consumption of all parts
of a wearable device. The initial response to the low-power
demand was to lo w er the supply voltage. For example, re-
ducing the supply voltage from standard 5.0 V to 3.3 V
reduces pow er by 56%.
Lo w eringthe supply voltage requires all components to

operate at low voltage. Additional reductions can be ob-
tained by selectiv ely low ering the supply voltage of speci�c
parts. An obvious candidate is the processor since it is re-
sponsible for 10 to 30% of the pow er consumption [12].
The dynamic approach to low-pow er is using power down

features to minimize the pow er consumption of unused hard-
w are. For portable computers this means turning o� the
hard disk, processor, screen, modem, sound, etc. Re-acti-
vation of hardware can take some time, which a�ects per-
formance (e.g., response time). Using simple power-down-
when-idle techniques the processor's pow er consumption can
be signi�cantly reduced. Depending on the usage pattern,
the po w er savings can amount to a 66% reduction [13]. A
re�nement is to make continuous trade-o�s betw een perfor-
mance and cost. The user demand (performance) must be
supplied at the low estcost (power consumption). P erfor-
mance can be expressed as the response time for interac-
tive applications, and as spatial/temporal resolution, color
depth, and distortion level for video. Voltage scaling is a
method to trade-o� processor speed against power consump-
tion. The pow er consumption of a processor running at high
speed and high voltage is much larger than running at low
speed and low voltage.
This paper studies the trade-o� betw een po w er consump-

tion and performance of processors supporting dynamic volt-
age scaling. Unlike previous studies in voltage scaling that
rely on simulations we have realized an actual implementa-
tion being part of a wearable computer. This allowsus to
presen t measurements of the performance/power trade-o� in
voltage scaling. F rom these numbers we derive the potential
gain in a system where applications assist the OS in adjust-
ing the voltage b y specifying their (bursty) requirements.

2. VOLTAGE SCALING
This section introduces the basic principles of power con-

sumption and the e�ects of voltage scaling. For digital
CMOS circuits, used in the majority of microprocessors, the
pow er consumption can be modeled accurately with sim-
ple equations [3, 9]. CMOS circuits ha ve both dynamic
and static pow er consumption. Static pow er consumption
is caused by bias and leakage currents but is insigni�cant in
most designs that consume more than 1 mW.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOBILE 7/01 Rome, Italy
© 2001 ACM ISBN 1-58113-422-3/01/07�$5.OO

251

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

The dominant power consumption for CMOS micropro-
cessors is the dynamic component. Every transition of a dig-
ital circuit consumes power, because every charge and sub-
sequent discharge of the digital circuit's capacitance drains
power. The dynamic power consumption is equal to

Pdynamic =
MX

k=1

Ck � fk � V
2

DD (1)

where M is the number of gates in the circuit, Ck the load
capacitance of gate gk, fk the switching frequency of gk, and
VDD the supply voltage. It is clear from Equation (1) that
reduction of VDD is the most e�ective mean to lower the
power consumption. Lowering VDD, however, creates the
problem of increased circuit delay. An estimation of circuit
delay is given by

� /
VDD

(VG � VT)2
(2)

where � is the propagation delay of the CMOS transistor,
VT the threshold voltage, and VG the input gate voltage [9].
The propagation delay restricts the clock frequency in a mi-
croprocessor. From Equations (1) and (2) it follows that
there is a fundamental trade-o� between switching speed
and supply voltage. Processors can operate at a lower sup-
ply voltage, but only if the clock frequency is reduced to
tolerate the increased propagation delay. When we assume
the dynamic power is the most dominant one, and the gates
gk of the microprocessor form a collective switching capaci-
tance C with a common switching frequency f , we obtain

P = C � f � V 2

DD (3)

Equation (3) shows that clock frequency reduction linearly
decreases power and voltage reduction results in a quadratic
power reduction. The critical path of a processor is the
longest path a signal can travel. The implicit constraint is
that the propagation delay of the critical path � must be
smaller than 1

f
. In fact, the processor ceases to function

when VDD is lowered and the propagation delay becomes
too large to satisfy internal timings at frequency f .
To put the above formulas in perspective Table 1 gives

the relation between frequency, voltage and power consump-
tion for the Transmeta TM5400 or 'Crusoe' processor [22].
Transmeta refers to their voltage scaling technology as Long-
Run, AMD calls it PowerNow, and Intel uses the term Speed-
Step. The Crusoe speci�cations give insights in the relation
between frequency and voltage. At the lowest frequency
(200 MHz) the Crusoe processor operates at 29% of the
maximum speed for less than 13% of the maximum power.
Without voltage scaling the power would be reduced to only
29%. Therefore, voltage scaling e�ectively more than halves
1:12

1:652
the energy per processor instruction.

Unfortunately energy savings with voltage scaling can be
limited due to the inuence on system performance. Con-
sequently, the bene�ts of voltage scaling are to be weighted
against the power consumed by the remainder of the sys-
tem. This issue will be addressed in Section 4.2. Second,
application performance is a combination of processor speed
and memory access latency. The performance of the mem-
ory subsystem is not linearly related to clock frequency, so
application performance does not scale linearly as will be

Frequency f Voltage VDD Relative power
(MHz) (V) (%)

700 1.65 100
600 1.60 80.59
500 1.50 59.03
400 1.40 41.14
300 1.25 24.60
200 1.10 12.70

Table 1: Clock frequency versus supply voltage for
the Transmeta Crusoe processor.

shown in Section 4. Third, certain applications like video
players have real-time deadlines to meet. This limits the
possibilities to apply voltage scaling by reducing the clock
frequency, because the time needed to complete a task in-
creases proportionally. The applicability of voltage scaling
will be discussed in Section 5.

3. IMPLEMENTATION
Voltage scaling has been primarily studied through simu-

lation, see the related work discussed in Section 7. The sim-
ulation results are promising, so time has come to validate
the technique. Within UbiCom we assembled a wearable
computer that supports voltage scaling to experiment with
application-directed voltage-scaling policies (Section 5). There-
fore, we needed a processor capable of voltage scaling, but
very few actually exist; the ARM8 implementation by Berke-
ley [16] is not readily available, and the Crusoe processor [22]
has only been introduced recently. This is remarkable since
Weiser et al. already in 1994 showed the potentials of volt-
age scaling for general purpose processors [23]. We selected
the embedded StrongARM 1100 processor [8] that does sup-
port frequency scaling, but only operates at 1.5 V according
to the data sheet. Operating outside the speci�cations is a
risk, but experiments show that a range from 0.8 V to 2.0 V
is feasible.

3.1 Experimental platform
The embedded StrongARM processor board displayed in

Figure 1 forms the heart of the wearable augmented-reality
terminal that we are developing within UbiCom [19]. The
board, dubbed LART, has a size of 10x7.5 cm, a weight
of 50 gr, 32 MB of volatile memory, 4 MB of non-volatile
memory, a SA-1100 190 MHz processor, and various I/O ca-
pabilities. The LART has a programmable voltage regulator
to control the voltage of the processor core.
The LART runs under control of the Linux operating sys-

tem (Version 2.4.0), which has been enhanced to support fre-
quency and voltage scaling. We added a kernel module that
changes the clock frequency and subsequently recalibrates
the kernel's internal delay routines, in particular those that
busy-wait by counting instruction cycles. In addition, the
kernel module adjusts the memory parameters that control
the read/write cycles on the external bus. The code has
been structured such that it may be interrupted and does
not depend on external memory, which is temporarily un-
available during a clock frequency change. All LART design
schematics and kernel modules are openly available [2].

252

Figure 1: Low-power StrongARM embedded Linux
platform (LART).

3.2 Measurement setup
To measure the power consumption of the LART, we used

the con�guration shown in Figure 2. The unregulated power
of a battery is converted into a �xed 3.3 V for all the com-
ponents on the board, except the processor. The processor
voltage is supplied by a variable regulator. The accuracy of
the measurements is within 2%.

LART

V

A

Avoltage regulator
3.3 V

0.6 - 2.3 V
voltage regulator

V

other

SA1100
processor

DRAM
FLASH

A

V

+

power supply
unregulated

-

Figure 2: Measurement setup.

4. RESULTS
This section describes the e�ects of frequency and voltage

scaling on the power consumption, processor performance,
and memory performance of the LART. We ran several mi-
cro benchmarks (dhrystone, lmbench) as well as a full-blown
H.263 video decoder. During each run the clock frequency
and voltage were kept constant; dynamic voltage scaling is
discussed in Section 5.

4.1 Required voltage
The �rst experiments determine for each clock frequency

the minimum required voltage at which the SA-1100 pro-
cessor still functions properly. We used the H.263 decoder
to check if the processor functions at a given frequency and
voltage combination. The resulting processor envelope is
shown in Figure 3. Although the SA-1100 is speci�ed for
190 MHz and a VDD of 1.5 V, it can be over-clocked up to a
frequency of 251 MHz with a VDD of 1.65 V. The minimum
clock frequency at which the processor functions correctly is
59 MHz with a VDD of 0.79 V. Voltage scaling really pays
o�: at the lowest clock frequency the processor consumes

0

0.5

1

1.5

2

2.5

 74 103 133 162 192 221 251

Pr
oc

es
so

r
vo

lta
ge

 in
 V

CPU Clock Frequency in MHz

Specified operation area

Not functional

Destructive

Figure 3: Processor envelope.

0

200

400

600

800

1000

 74 103 133 162 192 221 251

po
w

er
 c

on
su

m
pt

io
n

[m
W

]

clock frequency [MHz]

CPU intensive,
fixed voltage

CPU intensive,
voltage scaling

Idle mode

Figure 4: Total power consumption for idle and cpu-
intensive workloads.

1/5 of the energy per instruction that is required at peak
performance. Note that the voltage range and, hence, the
eÆciency gain of the SA-1100 is much larger than that of
the Crusoe processor (see Table 1).

4.2 System performance

The next experiment determines the impact of voltage
scaling on the power consumption of the complete LART
(processor, memory, etc). Figure 4 shows the total power
consumption of the LART under two di�erent workloads:
idle and cpu-intensive.
The idle workload was used to measure the background

power consumption of the LART, which is always spent re-
gardless of the processor load. The Linux scheduler puts
the processor into idle mode when no processes are active.
Idle mode stalls the CPU clock, but other services of the
embedded processor such as the memory controller and OS-
timer are still functional [8]. All these services are driven
by the processor clock, which explains why the power con-
sumption in idle mode increases with the frequency. The
SA-1100 also supports a more eÆcient sleep mode, but this
mode interrupts DMA transfers, stops the LCD controller,
blocks memory access, etc. and the wake-up sequence takes
much longer than in idle mode.

253

0

100

200

300

400

500

600

700

 74 103 133 162 192 221 251

po
w

er
 c

on
su

m
pt

io
n

[m
W

]

clock frequency [MHz]

CPU core

total

Figure 5: Power consumption for read.

The cpu-intensive workload consists of the dhrystone bench-
mark exercising the CPU and cache that operate on the vari-
able core voltage. We �rst measured the e�ect of scaling the
clock frequency while keeping the voltage constant at 1.5 V.
In this case the power consumption increases roughly lin-
ear with the frequency, as is expected. Next, we measured
the power consumption when the core voltage was set to
the minimal value reported in Figure 3. The resulting curve
shows the expected quadratic increase of power consumption
when the frequency is varied from 59 to 251 MHz.
From the power consumption at 59 MHz (105.8 mW) and

at 251 MHz (963.7 mW) it follows that an instruction at
peak performance consumes a factor 2.1 more energy than
at lowest performance. When we only consider the pro-
cessor power consumption, instead of the total LART, the
di�erence is a factor 4.94 (33.1 versus 696.7 mW). This ob-
servation only holds for cpu-intensive applications; memory
references introduce other e�ects as will be discussed next.

4.3 Memory performance
The impact of memory references on power consumption

is diÆcult to predict since memory always operates at 3.3 V,
while the processor core operates at a variable voltage. The
LART has 32 MB of EDO-DRAM with an access time of
60 ns. We used the \lmbench" toolkit [15] to measure the
power consumption while reading randomly from memory,
circumventing the cache. The power consumption numbers
in Figure 5 include voltage scaling, as is the case in all fol-
lowing �gures. Note the general trend of a linear increase
in power consumption, but with break downs occurring at
162 MHz and 236 MHz.
These break downs are not caused by the processor; the

lower curve in Figure 5 plots the power consumption of the
processor core only. Figure 6 shows that the obtained band-
width at each frequency has similar dips. The explanation
of this phenomenon is the limited capability of the Strong-
ARM to generate high resolution DRAM timing waveforms.
Moreover the DRAM waveform generator is driven by the
system clock. The memory timing waveforms must be pro-
grammed by specifying a bit sequence that is used at sub-
sequent clock pulses. Since the length of a clock pulse is
not too �ne compared to the (constant) DRAM timings, an
optimal waveform can not be generated at each frequency.

0

20

40

60

80

100

 44 74 103 133 162 192 221 251

m
em

or
y

ba
nd

w
id

th
 [M

B
/s

]

clock frequency [MHz]

Figure 6: Memory bandwidth for read.

0

1

2

3

4

5

6

7

 44 74 103 133 162 192 221 251

m
em

or
y

ba
nd

w
id

th
/p

ow
er

 r
at

io
 [m

J/
M

B
]

clock frequency [MHz]

total

memory only

CPU only

memory+CPU

Figure 7: Energy breakdown for memory read.

It is instructive to combine the bandwidth and power con-
sumption curves to show the relative cost at each frequency.
Figure 7 gives the energy required to read one megabyte
from memory. The \memory only" curve represents the en-
ergy drawn from the �xed 3.3 V, and shows that reading
memory becomes relatively cheaper when the frequency in-
creases. The \total" curve is the energy drawn from the
batteries and includes both the memory, CPU activities,
and voltage regulators. Initially the total energy drops,
just as the \memory only" curve, but at higher frequen-
cies the power consumed by the CPU increases considerably
and forces the total energy to rise again. The di�erence
between the \memory+cpu" curve and the \total" curve is
the constant loss factor of the two voltage regulators. The
best result is obtained at 148 MHz, where the bandwidth is
92 MB/s and the power consumption is 514.2 mW, with a
cost of 5.6 mJ/MB.

4.4 Application performance
The power consumption of applications depends on the

ratio between instructions and memory references. Figure 8
shows the power consumed by a publicly available Telenor
H.263 video decoder in relation to the clock frequency. It
also gives a breakdown in processor and memory power-

254

0

200

400

600

800

1000

1200

 74 103 133 162 192 221 251

po
w

er
 c

on
su

m
pt

io
n

[m
W

]

clock frequency [MHz]

total

CPU core

Non-CPU

Figure 8: Power breakdown for H.263 decoder.

consumption. At low frequencies the decoder is memory
bound; at high frequencies the processor dominates.

5. DYNAMIC VOLTAGE SCALING
The results from the previous section were obtained under

static conditions. In a real system, however, the frequency
and voltage have to be set dynamically to match the chang-
ing demands for processing power. This is the responsibility
of the Operating System (OS). The diÆculty is that the
OS has no direct knowledge of the workload generated by
(bursty) applications, and must derive the optimal settings
from external observations, for example, by monitoring the
system load and estimating the future demand. This is a
non-trivial task, for example, for the Mac OS it is hard to
determine when no useful computation is occurring [13].
Predicting the future workload from the current situation

is diÆcult, and mispredictions can seriously reduce the gains
of voltage-scaling as observed in several simulation stud-
ies [6, 11, 17, 23]. These simulations use an interval-based
scheduler with a time window of 5 to 100 ms. When idle
time is detected within a window the clock speed is reduced
proportionally in the next window. This reduces the idle-
time to zero by running the applications as slow as possible.
Whenever a window has no idle time, the speed is increased
to accommodate for the un�nished work in the next window.
Within a real-time OS where applications register deadlines
and (worst-case) computational needs, the OS knows which
amount of work must be compensated for in the next window
and selects the appropriate processor speed. Most OSes,
however, cannot determine the amount of un�nished work
due to lack of real-time information, and increase the speed
according to some heuristic. This is no problem for fairly
constant workloads, but poor schedules result for bursty ap-
plications. For example, simulations with an MPEG decoder
show that an additional 36 % energy reduction remains pos-
sible with a better workload prediction [17]. In this section
we show that such gains can actually be achieved by making
applications power-aware.

5.1 System support
A �rst requirement for any scheme to successfully exploit

dynamic voltage scaling is that the processor frequency (and
voltage) can be changed without much delay. To assess the

Figure 9: Scope image of voltage scaling.

responsiveness of the LART we added voltage scaling to the
kernel module already providing frequency scaling. When-
ever the frequency is changed, the module also sets the in-
put voltage to the minimum level reported in Figure 3. The
required frequency is read from /proc. /proc is a Linux
pseudo-�lesystem that is used as an interface to kernel data
structures. The frequency and voltage scaling module cre-
ates an entry in /proc, which is readable and writable from
user space. The kernel module was also modi�ed to generate
a pulse on an output pin just before changing the frequency
and voltage, and another pulse on another output pin just
after these changes.
We used a digital oscilloscope to measure the time re-

quired to change to a new frequency/voltage. The two upper
lines on the scope image in Figure 9 show the pulses marking
the beginning and the end of a clock/voltage change. The
time di�erence is 140 �s. This time is insensitive to the fre-
quency, and is needed to stabilize the internal clock at the
new frequency.
The bottom line on the scope (labeled 3) shows how the

processor-core voltage regulator responds to a steep increase,
followed by a similar decrease in clock speed. The bench-
mark starts with 59 MHz at 0.8 V, then jumps to 221 MHZ
at 1.5 V, stays at this level for about 1 ms, and �nally returns
back to 59 MHz at 0.8 V. The required processor-voltage in-
crease is rapidly handled (40 �s), but the decrease takes a
long time (5.5 ms). This is caused by the high capacitance
of the regulator and the low power demand of the proces-
sor at 59 MHz. During the long delay, however, the energy
is consumed from the regulator capacitance rather then the
battery.

5.2 Power-aware applications
To overcome the problems of interval-based schedulers

we propose that applications provide additional information
about their future demands to the OS, so it does not need
to work with questionable predictions. The drawback of
this approach is that it requires modi�cations of the appli-
cation source. This is, however, only required for bursty
applications and, more importantly, applications running
on a resource-scarce wearable device must be modi�ed any-
way. It is generally accepted that limitations imposed by
low weight, small size, extensive battery life, wearable user

255

interfaces, and wireless connectivity all have a profound ef-
fect on applications [1]. Without extensive adaptation of
the applications to the wearable environment, no valuable
service can be given, therefore modi�cation of applications
is inevitable.
Applications must be made aware of their processing de-

mands and inform the OS about it, so the optimal processor
speed can be selected that minimizes power consumption
and still meets the application's deadlines. As a �rst step
the application could indicate the required number of clock
cycles (instructions) to the next deadline (absolute time).
Combining the cycle count with the power-consumption curve
in Figure 4 allows the OS to compute the lowest speed at
which this application could meet its deadline. When mul-
tiple applications are time sharing the processor, the OS
should take all constraints (deadlines) into account. A re-
�nement is to have the applications express their demands
in both instructions and memory references, which would
yield better power consumption approximations.

6. POWER-AWARE VIDEO PLAYBACK
To determine how much e�ort is required to make appli-

cations power-aware, and the bene�ts that can be achieved,
we conducted an experiment with a video playback appli-
cation. In essence, we adapted the Telenor H.263 encoder
to annotate video frames with information about the de-
coding complexity, so that the corresponding decoder can
set the processor frequency considering the current status of
the LART. In our experiment we used the 12.6 s carphone
benchmark video, which was encoded at a rate of 15 fps with
all compression optimizations enabled. The encoded �le is
rather small (98,480 bytes) and can be stored in the RAM-
disk of the LART. Figure 10 gives the frame type and size
for the carphone benchmark video. Note the large initial
I-frame.
An interesting question is which complexity information

to associate with a frame. It must be detailed enough to
allow for good estimates of the decoding time, yet it must
be simple enough to induce little overhead in computing
and transmission. We found that the combination of frame
type (I, P, or PB) and frame size (i.e., number of bits in
the encoded stream) yields a complexity measure that is
simple yet accurate. Figure 11 shows the results of measur-
ing the decoding time on the LART of each frame in the
carphone video. We measured the decoding times at dif-
ferent processor frequencies, 59 and 221 MHz, to take the
non-linear memory bandwidth into account. At each fre-
quency the results show a strong correlation between frame
size and decoding time, with PB frames being more expen-
sive to process than P frames. A slight complication with
our complexity measure is that the frame size is not part of
the standard H.263 headers. Fortunately, H.263 allows for
additional signalling through the (optional) PEI �eld in the
frame (picture) header, so a modi�ed encoder can pass the
frame size on to the decoder running on the LART.
Combining the decoding times from Figure 11 with the

the strong variation of frame sizes in Figure 10 demonstrates
that video decoding is a bursty application. Furthermore,
video decoding is a demanding application since none of the
frames can be decoded within the required 67 ms (i.e. 15
frames per second) at the lowest frequency of 59 MHz. On
the other hand, running the CPU at high speed (221 MHz)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120 140 160 180

F
ra

m
e

si
ze

 [b
its

]

Frame number

I frame
PB frame

P frame

Figure 10: Frame size variation over time.

0

50

100

150

200

1000 2000 3000 4000 5000 6000 7000 8000 9000

D
ec

od
in

g
tim

e
[m

s]

Frame size [bits]

PB frame @ 59 MHz
P frame @ 59 MHz

PB frame @ 221 MHz
P frame @ 221 MHz

Figure 11: Decoding time vs. frame size&type.

is only necessary for the two largest PB frames. Video de-
coding is thus a good test case for dynamic voltage scaling.
We used the experimental setup discussed in Section 3.2

to measure the power consumption of a modi�ed H.263 de-
coder that reads a play list specifying the frequency at which
each individual frame should be decoded. Since subsequent
frames in the carphone video often di�er considerably in
size and sometimes in type (see Figure 10), the decoder
switches 167 times to another frequency out of a possible
191 (190 frames and 1 return to idle). We sampled the
voltage and current at a rate of 2.5 kHz and calculated the
energy consumption. In case of the carphone video, the av-
erage power for decoding is 304 mW (100 mW for the CPU,
and 204 mW for the memory subsystem). For comparison,
we also measured power when decoding at a �xed frequency
of 236 MHz, which averages to 405 mW (198 mW for the
CPU, and 207 mW for the memory subsystem). Thus, dy-
namic voltage scaling reduces the CPU power with a factor
of two, but total system power only with 25 % since the
cost of memory accesses is nearly the same with the iden-
tical workload. We expect that the overall e�ect of voltage
scaling can be increased by properly optimizing the H.263
decoder to take the size of the cache, which is part of the
scalable processor core, into account. For example, large

256

260

280

300

320

340

360

380

400

420

0 100 200 300 400 500 600 700

A
ve

ra
ge

 d
ec

od
in

g
po

w
er

 [m
W

]

Accumulated missed deadline times [ms]

236 MHz

192 MHz

133 MHz

20 ms

50 ms

Fixed frequency
Interval scheduling
Power-awareness

Figure 12: Power-quality tradeo�.

look-up tables are ine�ective on the LART with its small
data cache of 8 KB, and degrade performance.
The carphone video can also be decoded at lower (�xed)

frequencies, but this results in missed frame deadlines. We
modi�ed the H.263 decoder to record missed deadlines, and
report the accumulated miss times at the end. With this
quality measure it is possible to study the trade-o� between
power and quality. Our accumulated miss times metric is
similar to the clipped-delay metric in the simulations by
Pering [17]. Figure 12 shows the trade-o� when decreasing
the (�xed) frequency from 236 MHz (304 mW, 63 ms) down
to 133 MHz (278 mW, 388 ms). All measurements have an
equal decoding time. Note that in all cases deadlines are
missed. This is caused by the initial I-frame that cannot
be decoded within 67 ms, even at the highest frequency.
This also explains why the power-aware application with its
perfect knowledge misses deadlines.
Running the application at some �xed frequency is not a

practical solution, hence, we programmed an interval-based
scheduler. It is implemented as a user-space process that pe-
riodically reads the idle times from the /proc system statis-
tics and instructs the kernel to change the frequency (and
voltage) by writing into /proc. The policy is to lower the
frequency by one step whenever the fraction of idle time ex-
ceeds a threshold (currently set at 50 %), and to increment it
when no idle time is recorded in the last interval. At succes-
sive increments the step size is doubled to scale up rapidly.
The performance for two di�erent interval lengths (20 ms
and 50 ms) is shown in Figure 12. Note that in compar-
ison to the �xed-frequency schemes the interval scheduler
performs worse. For example, the 20 ms scheduler oper-
ates with an average power of 337 mW and causes 400 ms
of missed deadlines; running at 192 MHz requires the same
power, but reduces the missed deadlines to only 92 ms, while
running at 133 MHz incurs a similar miss time, but requires
less power (278 mW). Signi�cant improvements need to be
made before interval scheduling can handle bursty applica-
tions as well as basic �xed-frequency scheduling, let alone
power-aware applications.

7. RELATED WORK
With the development of experimental voltage scaling plat-

forms such as the Itsy by Compaq [4], the ARM8 implemen-

tation by Berkeley [16], and our LART system it becomes
�nally possible to measure the e�ectiveness of various ap-
proaches to dynamic voltage scaling previously developed
on the basis of theoretical analysis [9] and simulation [6, 11,
17, 23]. Practical experience is vital to determine the best
approach for exploiting commercial processors with voltage
scaling support that are currently appearing on the mar-
ket: the Transmeta Crusoe processor, Intel's XScale, and
the K6-IIIE by AMD.
The various approaches to managing variable voltage pro-

cessors di�er in the amount of information that is avail-
able. We distinguish four classes: hardware-based (no infor-
mation), interval-based (load information only), integrated
schedulers (all OS statistics), and application-speci�c (com-
plete knowledge). The more information is available, the
better results will be obtained.
The Transmeta Crusoe processor is the prime example of

the hardware-based approach. It has built-in support for
clock scheduling in the "microcode" of the processor [21].
Unfortunately little information is made available about the
exact workings of the \LongRun" technology, but it is clear
that it operates in isolation, that is, without any help form
the OS or application. Our limited experience with the Cru-
soe shows that it, consequently, exhibits an all-or-nothing
behavior switching rapidly between full and minimal speed.
This results in wasting energy compared to running at in-
termediate speeds.
Adding an interval-based clock scheduler to the OS is the

topic of many simulation papers. A typical example are
the simulations by Pering [17] showing that interval-based
clock scheduling at the OS-level reduces processor power
considerably. The realized eÆciency, however, is extremely
dependent on the interval length and application. It is dif-
�cult to choose an interval such that all applications can
be scheduled eÆciently. In particular bursty applications
with a variable resource requirement \fall signi�cantly short
of optimal". This observation is con�rmed by recent experi-
mental work on the ARM8 [18] and Itsy [7], and matches the
(poor) performance results obtained by the interval-based
scheduler developed for the LART when running the H.263
video decoder.
To improve the class of applications that can be handled

transparently by the OS, other information than the pro-
cessor load can be used to predict the future demands of
the application. This requires a tight integration of the
variable-voltage scheduler and the OS. For example, Flaut-
ner et al. [5] describe an integrated scheduler that main-
tains processor usage statistics of every process, observes
the communication pattern between processes, keeps track
of input/output device usage by processes, and tries to ex-
tract deadlines from periodic tasks such as video decoding.
Unfortunately the simulation results presented do not in-
clude a comparison with a traditional interval-based sched-
uler, so the advantage of using additional information is still
to be determined. To increase the scope for improvements
at the OS level, several researchers have proposed to use
soft deadlines [5, 14]. For example, Lorch et al. exploit the
observation that a reaction time of 50 ms for interactive
applications is below the perception threshold of the user.
Therefore, the application processing time for, say, a mouse
click can be increased to 50 ms (by slowing down the CPU)
without noticeable performance degradation. O�-line simu-
lations show that the upper bound on the additional energy

257

saving is in the order of 20%. It remains to be seen how much
energy can be actually saved in a real implementation.
The approach that will save most energy is to involve the

application in determining the lowest possible clock speed.
This is the approach taken in this paper, and good results
are demonstrated for bursty workloads as generated by a
modi�ed H.263 video decoder. The main drawback is that
applications become more complex, because they must pro-
vide hints about their future behavior (e.g., processing de-
mands, deadlines) to the OS. To alleviate the task of the
application developer Shin et al. discuss an approach based
on automatic compile-time analysis [20]. Their software tool
analyses the source code of an MPEG 4 decoder and adds
a clock schedule that is guaranteed to meet hard real-time
deadline requirements (i.e. frame deadlines). The worst case
execution times, however, are rarely encountered in natural
video sequences and, consequently, the clock speed is set too
high wasting energy.

8. CONCLUSIONS AND FUTURE WORK
Power consumption is the limiting factor for the func-

tionality of future wearable devices. Since interactive ap-
plications like wireless information access generate bursts
of activities, it is important to match the performance of
the wearable device accordingly. A popular approach is us-
ing power-down modes to minimize the power consumption
of unused hardware like disks, screen, etc. In the case of
the processor, better results can be obtained by scaling the
speed and voltage to match the required performance level,
since power consumption is quadratically related to the sup-
ply voltage. Simulations have pointed out the potentials of
voltage scaling.
Within the UbiCom project we have assembled a wearable

system that supports dynamic voltage scaling. It is based
upon the low-power embedded SA-1100 processor, whose
frequency can be varied from 59 MHz to 251 MHz. The
required supply voltage varies from 0.8 V to 2.0 V. Mea-
surements show that the power consumption of the proces-
sor at 59 MHz is 33.1 mW, while it consumes 696.7 mW
at 251 MHz. It follows that the energy per instruction at
minimal speed is 1/5 of the energy required at full speed.
This result recon�rms the importance of voltage scaling.
We have added kernel support to Linux that allows run-

ning applications to scale the frequency and voltage from
user space in only 140 �s. This allows power-aware appli-
cations to quickly adjust the performance level of the pro-
cessor whenever the workload changes. An experiment with
power-aware video playback showed that a simple complex-
ity measure (frame size & type) associated with each frame
allows for an eÆcient control of the frequency (and volt-
age). The power-quality results show that the power-aware
decoder outperforms both a static �xed-frequency policy as
well as a dynamic interval-based scheduler that responds to
the load average.
Our future plans are to extend the application-speci�c

approach for dynamic voltage scaling to power management
in general. Within UbiCom we are developing a framework
that is based on the explicit exchange of performance and
power consumption information between hardware devices
(CPU, hard disk, wireless link, etc.) OS, and applications.
The explicit exchange of information will allow us to perform
intelligent and eÆcient power management for the complete
wearable Ubicom system.

drivers

applications

drivers

applications

(b)

drivers

applications

(c)

drivers

applications

(d)

OS
OS OS OS

(a)

hardware hardware hardware hardware

observers

Figure 13: Four power management frameworks.

Figure 13 shows four power management frameworks with
three di�erent layers: hardware, OS, and application. Frame-
work (a) is the traditional framework without performance-
power consumption exchange, the situation for interval-based
clock schedulers. Within Framework (b) applications spec-
ify their future requirements to the lower layer and hardware
devices can be scheduled more eÆciently, as shown in this
paper. Framework (c) demonstrates interaction between ap-
plications and hardware. An example of such interaction
would be a power-aware video decoder that meets almost
all frame decoding deadlines, yet misses the deadlines for
the complex and power expensive frames. Such a decoder
would extend the single power-awareness data point in Fig-
ure 12 into a curve that is more power eÆcient than the
�xed frequency curve. Framework (d) adds observers that
log all application requests and try to predict future requests
for applications that do not specify their hardware needs
(similar to integrated schedulers). The purpose of including
observers is to improve the energy eÆciency of legacy codes.
Currently we are working on an implementation of frame-

work (d) on our LART platform. The target application is
wireless audio and video playback with a guaranteed battery
lifetime that is speci�ed by the user. Using the power con-
sumption information of the hardware devices (CPU, hard
disk, wireless link) and the application's ability to scale the
image and sound quality, we can infer the control settings
that provide the best quality without draining the battery
completely before the user-de�ned target time.

Acknowledgements
We would like to thank Jan-Derk Bakker and Erik Mouw
for providing us with an excellent low-power platform, and
assisting us with the measurements and their interpretation.
We thank Hylke van Dijk and the anonymous reviewers for
commenting on the draft version of this paper.

9. REFERENCES
[1] O. Angin, A. Campbell, M. Kounavis, and R. Liao.

The MobiWare toolkit: Programmable support for
adaptive mobile networking. IEEE Personal
Communications, Aug. 1998.

[2] J.-D. Bakker, J. Mouw, and M. Joosen. Linux
Advanced Radio Terminal design page.
http://www.lart.tudelft.nl/

[3] T. Burd and R. Brodersen. Processor design for
portable systems. Journal of VLSI Signal Processing,
Aug. 1996.

[4] Compaq, Western Research Lab. The Itsy (version 2)
pocket computer, overview slides.
http://research.compaq.com/wrl/projects/itsy/

[5] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In

258

7th ACM Int. Conf. on Mobile Computing and
Networking (Mobicom), Rome, Italy, July 2001.

[6] K. Govil, E. Chan, and H. Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power
CPU. In MobiCom, Berkeley, CA, Nov. 1995.

[7] D. Grunwald, P. Levis, K. Farkas, C. Morrey, and
M. Neufeld. Policies for dynamic clock scheduling. In
OSDI, San Diego, CA, Oct. 2000.

[8] Intel StrongARM SA-1100 microprocessor developer's
manual.
http://developer.intel.com/design/strong/
manuals/278088.htm

[9] T. Ishihara and H. Yasuura. Voltage scheduling
problem for dynamically variable voltage processors.
In ISPLED, Aug. 1998.

[10] R. Lagendijk. The TU-Delft Research Program
Ubiquitous Communications. In 21st Symp. on
Information Theory in the Benelux, Wassenaar, The
Netherlands, May 2000.

[11] Y. Lee and C. Krishna. Voltage-clock scaling for low
energy consumption in real-time embedded systems.
In 6th Int. Conf. on Real-Time Computing Systems
and Applications, 1998.

[12] J. Lorch. The complete picture of the energy
consumption of a portable computer. Master's thesis,
UC Berkeley, Dec. 1995.

[13] J. Lorch and A. Smith. Scheduling techniques for
reducing processor energy use in MacOS. Wireless
Networks, 1997.

[14] J. Lorch and A. Smith. Improving dynamic voltage
scaling algorithms with pace. In Sigmetrics 2001,
Cambridge, MA, June 2001.

[15] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. In USENIX Annual Technical
Conference, San Diego, CA, Jan. 1996.

[16] T. Pering, T. Burd, and R. Brodersen. Dynamic
voltage scaling and the design of a low-power
microprocessor system. In ISCA, 1998.

[17] T. Pering, T. Burd, and R. Brodersen. The simulation
and evaluation of dynamic voltage scaling algorithms.
In ISPLED, Aug. 1998.

[18] T. Pering, T. Burd, and R. Brodersen. Voltage
scheduling in the lpARM microprocessor system. In
ISPLED, July 2000.

[19] J. Pouwelse, K. Langendoen, and H. Sips. A feasible
low-power augmented-reality terminal. In 2nd IEEE
and ACM Int. Workshop on Augmented Reality
(IWAR'99), San Francisco, CA, Oct. 1999.

[20] D. Shin, S. Lee, and J. Kim. Intra-task voltage
scheduling for low-energy hard real-time applications.
In IEEE Design & Test of Computers, Mar. 2001.

[21] Transmeta-corporation. The technology behind the
Crusoe processor.
http://www.transmeta.com/crusoe/download/
pdf/crusoetechwp.pdf

[22] Transmeta-corporation. Tm5400 processor
speci�cations.
http://www.transmeta.com/crusoe/download/
pdf/TM5400 ProductBrief 5-23-00.pdf

[23] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In OSDI, pages
13{23, Nov. 1994.

259

