
Refactoring: Emerging Trends and Open Problems

Tom Mens
Service de Génie Logiciel

Université de Mons-Hainaut
B-7000 Mons, Belgique
tom.mens@umh.ac.be

Arie Van Deursen
CWI & Delft University of Technology
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands
Arie.van.Deursen@cwi.nl

October 22, 2003

Abstract

This position paper identifies emerging trends in refactor-
ing research, and enumerates a list of open questions, from
a practical as well as a theoretical point of view. We suggest
these directions for further research based on our own ex-
perience with refactoring, as well as on a detailed literature
survey on software refactoring.

1. Introduction

The termrefactoring, first introduced by Opdyke in his PhD
thesis [10] refers to “the process of changing an [object-
oriented] software system in such a way that it does not
alter the external behaviour of the code, yet improves its
internal structure” [6]. Refactoring can be regarded as the
object-oriented equivalent ofrestructuring, which is defined
by Chikofsky and Cross [2] as “the transformation from one
representation form to another at the same relative abstrac-
tion level, while preserving the subject system’s externalbe-
haviour (functionality and semantics). [...] it does not nor-
mally involve modifications because of new requirements.
However, it may lead to better observations of the subject
system that suggest changes that would improve aspects of
the system.”

Refactoring as proposed by Fowler not only covers the
mechanics of restructuring, but also addresses the following
issues:

• Refactoring emphasizes that, in absence of more for-
mal guarantees, testing should be used to ensure that
each restructuring is behavior preserving. A rich test
suite should be built, which must be run before and
after each test is applied.

• Refactorings are described in a catalog, using a tem-
plate reminiscent of design patterns.

• Refactorings are applied in small steps, one by one,
running the test suite after every step.

Mens and Tourwé [9] have performed a very extensive
literature survey on refactoring research. This survey has
been used as a basis in this paper to identify future trends
in refactoring research, and to suggest a number of open
research questions and practical questions that remain to be
solved.

2. Emerging trends

2.1. Refactoring Activities

The refactoring process consists of a number of different
activities, each of which can be automated to a certain ex-
tent: (1) identify where the software should be refactored;
(2) determine which refactorings should be applied to the
identified places; (3) guarantee that the applied refactoring
preserves behaviour; (4) apply the refactoring; (5) assess
the effect of refactoring on software quality characteristics;
(6) maintain consistency between refactored program code
and other software artifacts (or vice versa).

If we look at contemporary tools for software refactor-
ing, we see that support is ususally restricted to step 4 (and,
to a lesser extent, step 2), while support for the remaining
steps is largely neglected. Although some promising re-
search for these other steps has been initiated, it still needs
to make it into commercial development tools.

2.2. Techniques

As clearly identified in [9], a wide variety of techniques and
formalisms have been proposed and used to deal with re-
structuring and refactoring.

• Assertions(invariants, pre-, and postconditions) can be
used to express properties that should hold before and
after the refactoring has been applied.

• Graph transformationsprovide an underlying theory
of refactoring [8]. Each refactoring corresponds to a
graph production rule, and each refactoring application

1



corresponds to a graph transformation. The theory of
graph transformation can be used to reason about ap-
plying refactorings in parallel, using theoretical con-
cepts such as confluence and critical pair analysis.

• Program slicingcan be used to guarantee that a re-
structuring preserves some selected behaviour of in-
terest. It has been used to deal with program restruc-
turings such as function extraction.

• Software metricscan be used before a refactoring, to
measure the quality of a software system, and to iden-
tify places that need refactoring. It can also be applied
after the refactoring, to measure improvements of the
software quality.

• Formal concept analysiscan be used to restructure
object-oriented class hierarchies in a behaviour pre-
serving way.

• Program refinementcan be used to formally express
program refinements in a behaviour preserving way.

Initial results with each of these formalisms show that they
are promising for supporting certain aspects of refactoring.
However, further research and tool support remains neces-
sary. We also need to identify other formalisms that might
be used to support refactoring.

2.3. Types of software artifacts

Although refactorings have been applied primarily at the
level of source code, the same techniques can also be used
for a wide variety of different software artifacts: (object-
oriented) database schemata; (UML) design models; soft-
ware architectures; software requirements; executable code;
test suites and many more. As an example, a series of spe-
cific refactorings on JUnit test suites are presented in [5].

For some of these types of software refactorings, initial
research results have already been reported, but much more
research in this direction is needed. Also, support for co-
evolution between different types of artifacts is needed. For
example, if the source code is refactored, how are the design
models affected and vice versa? An initial analysis of the
impact of source code refactorings on test suites is presented
in [4].

2.4. Languages

Support for restructuring has been provided in a variety of
different programming languages and language paradigms:
imperative or procedural languages (Fortran, Cobol, C,
...); functional languages (Scheme, Lisp, Haskell, ...); logic
languages (e.g.,Prolog); class-based object-oriented lan-
guages (Smalltalk, Java, C++ , ...); prototype-based object-
oriented languages (e.g,Self); aspect-oriented languages
(e.g.,AspectJ).

Here the question can be raised whether tech-
niques/formalisms/tools that have been conceived for one
language/paradigm can be ported to another? Can we gen-
eralise the results over different languages? Can we spec-
ify and reason about refactorings in a language-independent
way? Do we need particular refactorings for particular lan-
guage concepts?

2.5. Tool support

Although it is possible to refactor manually, tool support is
considered crucial. Today, a wide range of tools is available
that automate various aspects of refactoring. For an exten-
sive and up-to-date overview of refactoring tools, we refer
to http://www.refactoring.com/.

Depending on the tool and the kind of support that is pro-
vided, the degree of automation can vary. Most commercial
tools support a semi-automatic approach, where the user
has to specify which refactoring he wants to apply to which
part of the source code, and the refactoring tool applies the
selected refactoring automatically. Some researchers also
demonstrated the feasibility offully automated refactoring,
but these have the disadvantage that the refactored software
becomes more difficult to understand. For example when
removal of duplicated code is taken to the extreme, this
tends to decrease understandability.

2.6. Process support

Refactoring is an important part of the software develop-
ment process.

In the context of amodel-driven achitecture(MDA) pro-
cess, refactorings are a special kind of model-to-model
transformations. They can be applied to transform the de-
sign of existing code into a form that can be understood by
the reverse engineering facilities of an MDA tool. More
research is required to decide which refactorings can be ap-
plied where and when in an MDA process and what other
techniques are complementary.

Refactoring naturally fits in anagile software develop-
mentprocess. It forms even one of the cornerstones of the
eXtreme Programming process, together with unit testing.

It is unclear how refactoring fits in the traditional water-
fall or spiral models of software engineering [1]. In partic-
ular, the tight integration with software testing emphasized
by Fowler is not easy to achieve in processes with a late test-
ing activity. Therefore, it remains an open question if and
how the activity of refactoring can be included in a more
classical software development process.

In a framework-basedor product line software devel-
opmentprocess, an entire range of products are devel-
oped/instantiated from a common core system. These leads
to the problem that different instantiations may become in-
consistent when this core system is refactored. Hence, ade-
quate support for inconsistency maintenance is required.

2



Software reengineeringprojects aim at restructuring
legacy software, possibly using a route starting with re-
verse engineering aimed at raising the level of abstraction
on which the reengineering can take place. Reengineering
purposes include support for platform migrations, migra-
tions to new types of library, and so on. It does not often
happen that a reengineering project takes place just for the
sake of improving the quality — in which case it could be
considered as a (large) refactoring activity. Within a reengi-
neering project, refactoring can have its place: certain types
of refactorings may help to simplify the reengineering itself.
Moreover, refactorings can be applied after the migration
has been conducted, in order to clean up the migrated code.

3. Open Questions

This section points out some future directions for refactor-
ing research in the form of open questions. The questions
have been subdivided into fundamental, research-directed
questions on the one hand, and practical, tool-directed ques-
tions on the other hand (although the distinction is not al-
ways that clear).

3.1. Fundamental research questions

Which formalisms and techniques are best suited for which
purpose?A wide range of formalisms and techniques can
be used to support refactorings. Each one has its own merits
and weaknesses. Hence, we need to identify which ones are
most appropriate for which refactoring activity, and how the
different formalisms and techniques can be combined.

How can we analyse and manage dependencies between
refactorings? When building complex refactorings, it is
crucial to determine which refactorings are mutually inde-
pendent, and which refactorings have to be applied sequen-
tially. Independent refactorings may be applied in parallel
to speed up the refactoring. Detecting sequential depen-
dencies between refactorings is also important to deal with
change propagation, because the application of a refactor-
ing may require many other refactorings to be applied as
well.

What is behaviour, and how can it be preserved by a
refactoring? Refactoring implies that programbehaviour
is preserved. The definition of refactoring talks about the
external behaviour, which states that “for the same input,
we should obtain exactly the same output”. In many situ-
ations, however, other aspects of the behaviour are as least
as important. Forreal-time systems, an essential aspect of
the behaviour is the execution time of certain (sequences
of) operations. Forembedded systems, memory constraints
and power consumption are also essential aspects of the be-
haviour. Forsafety-critical systems, there is a concrete no-
tion of safety (e.g., the liveness property) that needs to be
preserved by a refactoring. This implies that we need a

wider range of notions of behaviour that may or may not be
preserved by a refactoring, depending on domain-specific
or even user-specific concerns.

3.2. Practical questions

How can we tackle the scalability of refactorings?To be
able to implement tools for complex refactorings that scale
up to industrial software, it is necessary to compose primi-
tive refactorings into more complex refactorings. The use of
composite refactorings has several advantages. Firstly, they
better capture the specific intent of the software change in-
duced by the refactoring. As such, it becomes easier to un-
derstand how the software has been refactored. Secondly,
using composite refactorings will result in a performance
gain because the tool needs to check the preconditions only
once for the composite refactoring, rather than for each
primitive refactoring in the sequence separately.Thirdly,
composite refactorings weaken the behaviour preservation
requirements of their primitive constituents. The primitive
refactorings in a sequence do not have to be behaviour pre-
serving, as long as we can ascertain that the net effect of
their composition is behaviour preserving.

How can we manage consistency between software ar-
tifacts at different levels during refactoring?Software
is composed of many different types of software artifacts
(design models, analysis documents, architectures, source
code, test suites, and so on) that all evolve. Therefore, all
these software artifacts should be kept consistent when any
of them is being refactored. It is also important to analyse
the impact of a refactoring on all these artifacts, because a
single change may propagate throughout the entire software
system.

How can we build more open/extensible refactoring
tools?Refactoring tools need better mechanisms to config-
ure them with user-specific or domain-specific information
about when and where to apply which kind of refactoring,
or to extend the tool with new refactorings.

What is the effect of a refactoring on the software qual-
ity? For any software system we can specify its external
quality attributes (such as correctness, robustness, adapt-
ability, reusability, compatibility, performance, ease of use,
portability and understandability). Refactorings can be clas-
sified according to which of these quality attributes they im-
prove. This allows us to increase the quality of a software
system by applying the relevant refactorings at the right
places. To achieve this, we have to classify refactorings
in terms of their measurable effect on internal quality met-
rics (such as coupling, cohesion and complexity), and relate
these metrics to the external quality attributes to which the
are correlated. We also need case studies, empirical studies
and controlled experiments to provide anecdotal or statisti-
cal evidence about this correlation.

Quality in a refactoring context is often described using

3



the “code smell” metaphor, which has led to the creation
of smell detection tools [14, 13]. Can these tools also be
used to assess the quality improvements resulting from the
application of refactorings?

How can we compare tools, techniques and formalisms
for refactoring? Refactoring tools, techniques and for-
malisms need to be compared to evaluate whether a certain
refactoring tool or formalism is more suitable (e.g., more
performant, more correct, more scalable) than another one;
to evaluate whether they are complementary; to compare
the effects of a set of tools on the performance of the soft-
ware that has been refactored; to compare the number of
false positives or false negatives of different tools; and so
on. A first prerequisite for comparison is ataxonomyof
relevant evolution criteria. [7] provides a first attempt tode-
fine a general taxonomy for software evolution tools. [12]
applied this taxonomy to compare four different refactoring
tools. Secondly, we also need abenchmarkfor refactoring
[3]. Such a benchmark provides a commonly agreed set of
case studies that is freely available and that can be used by
anyone who wishes to apply his own tool, technique or for-
malism to these case studies. The results of this should be
freely available for other researchers to compare with their
own results. For all the steps that need to be undertaken to
come to an acceptable benchmark, we refer to [11].

4. Conclusion

The research in software refactoring continues to be
very active. Although commercial refactoring tools are
beginning to proliferate, there are still a lot of open issues
that remain to be solved. In general, there is a need for
formalisms, processes, methods and tools that address
refactoring in a more consistent, generic, scalable and
flexible way. In this paper we raised a number of open
questions, from a fundamental as well as from a practical
perspective. This list of questions can be used as a research
agenda for future reseach within the area of software
refactoring.

Acknowledgements. Tom Mens is partially funded by
FWO research project G.0452.03 “A formal foundation for
software refactoring”. The research is carried out in the
context of the scientific research networks “Formal Foun-
dations of Software Evolution” and “Research Links to Ex-
plore and Advance Software Evolution” financed by the
Fund for Scientific Research - Flanders and the European
Science Foundation, respectively.

Arie van Deursen received partial support from SEN-
TER, project Ideals, hosted by the Embedded Systems In-
stitute, Eindhoven, The Netherlands.

References

[1] B. Boehm. Software engineering.IEEE Transactions on
Computers, 12(25):1226–1242, 1976.

[2] E. J. Chikofsky and J. H. Cross. Reverse engineering and
design recovery: A taxonomy.IEEE Software, 7(1):13–17,
1990.

[3] S. Demeyer, T. Mens, and M. Wermelinger. Towards a soft-
ware evolution benchmark. InProc. Int’l Workshop on Prin-
ciples of Software Evolution, September 2001.

[4] A. v. Deursen and L. Moonen. The video store revisited –
thoughts on refactoring and testing. InProc. 3rd Int’l Conf.
eXtreme Programming and Flexible Processes in Software
Engineering, pages 71–76, 2002. Alghero, Sardinia, Italy.

[5] A. v. Deursen, L. Moonen, A. v. d. Bergh, and G. Kok.
Refactoring test code. In G. Succi, M. Marchesi, D. Wells,
and L. Williams, editors,Extreme Programming Perspec-
tives, pages 141–152. Addison-Wesley, 2002.

[6] M. Fowler. Refactoring: Improving the Design of Existing
Programs. Addison-Wesley, 1999.

[7] T. Mens, J. Buckley, A. Rashid, and M. Zenger. Towards
a taxonomy of software evolution. InProc. Workshop on
Unanticipated Software Evolution, March 2003. Warshau,
Poland.

[8] T. Mens, S. Demeyer, and D. Janssens. Formalising be-
haviour preserving program transformations. InGraph
Transformation, volume 2505 ofLecture Notes in Computer
Science, pages 286–301. Springer-Verlag, 2002.

[9] T. Mens and T. Tourwé. A survey of software refactoring.
IEEE Trans. Software Engineering, ?:?–?, ? ? Revised sub-
mission.

[10] W. F. Opdyke.Refactoring: A Program Restructuring Aid in
Designing Object-Oriented Application Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[11] S. E. Sim, S. Easterbrook, and R. C. Holt. Using bench-
marking to advance research: A challenge to software engi-
neering. InProc. Int’l Conf. Software Engineering, 2003.

[12] J. Simmonds and T. Mens. A comparison of software refac-
toring tools. Technical Report vub-prog-tr-02-15, Program-
ming Technology Lab, November 2002.

[13] T. Tourwé and T. Mens. Automatically identifying refac-
toring opportunities using logic meta programming. In
Proc. Int’l Conf. Software Maintenance and Re-engineering
(CSMR), 2003.

[14] E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. InProceedings of the 9th Working
Conference on Reverse Engineering. IEEE Computer Soci-
ety Press, October 2002.

4


