
Crosscutting Concerns in J2EE Applications

Ali Mesbah, Arie van Deursen∗

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{Ali.Mesbah,Arie.van.Deursen}@cwi.nl

Abstract

We explore the evolution benefits of adopting aspects in a
J2EE setting by studying crosscutting concerns in a typi-
cal J2EE application. To identify these concerns, we take
a top-down as well as a bottom-up approach. In the top-
down view we focus on typical concerns that are known to
be crosscutting (e.g., persistence), the way they are currently
implemented and the possible gains and benefits if solved by
aspects. In the bottom-up approach we take a look at the ap-
plication’s source code, and apply aspect mining techniques
in order to find crosscutting concerns. We discuss how such
concerns can be represented in an aspect-oriented language
(viz. AspectJ), and reflect on the results in terms of maintain-
ability and evolvability of the affected system.

1. Introduction

From its inception, Java 2, Enterprise Edition (J2EE)1 has
established a new model for developing distributed appli-
cations. It is based on well-defined components to provide
server-side and client-side support for developing multi-tier
applications. The J2EE architecture defines a client tier, a
middle tier and a back-end tier. The client tier provides sup-
port for a variety of client types (e.g. HTML pages gen-
erated by JavaServer Pages (JSP), Java applets, Java Web
Start-enabled clients). The middle tier supports client ser-
vices through Web containers (e.g. Servlets, JSP) and sup-
ports business logic component services through Enterprise
JavaBeans (EJB) containers. The middle tier is often subdi-
vided into the Web tier and EJB tier. On the back-end tier ,
the enterprise information systems are accessible by the way
of standard APIs (e.g. JDBC).

Aspect-oriented software development (AOSD) [9] aims
at improving the modularity of software systems, by captur-
ing inherently scattered functionality, often called crosscut-
ting concerns, in a well-modularized way, making the evo-
lution of such systems easier and manageable. In order to

∗Also affiliated at Delft University of Technology, Faculty of Electrical
Engineering, Mathematics and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands.

1http://java.sun.com/j2ee/

achieve this, aspect-oriented programming languages add an
extra abstraction mechanism, called an aspect, on top of ex-
isting modularization mechanisms such as functions, classes
and methods. Aspects allow developers to tackle the prob-
lems of scattering and tangling by reducing the spread of
code belonging to a certain concern over different compo-
nents.

J2EE already provides a transparent component-based
framework in which many crosscutting concerns such as se-
curity and authentication are dealt with in the container with-
out requiring the developer to know the corresponding imple-
mentation. However, introducing AOSD into J2EE applica-
tion development could provide us with more flexible, mod-
ularized applications thus empowering the long-term evolu-
tion of applications developed in the framework.

The goal of this paper is to explore the evolution benefits
of adopting aspects in a J2EE setting. To that end, we study
crosscutting concerns in a typical J2EE application, Sun’s
Pet Store demonstration. To identify these concerns, we take
a top-down as well as a bottom-up approach. In the top-
down view we focus on typical concerns that are known to
be crosscutting (e.g., persistence), the way they are currently
implemented and the possible gains and benefits if solved by
aspects. In the bottom-up approach we will take a look at
the application’s source code, and apply aspect mining tech-
niques in order to find crosscutting concerns. We discuss
how such concerns can be represented in an aspect-oriented
language (viz. AspectJ), and reflect on the results in terms of
maintainability and evolvability of the affected system.

This paper is laid out as follows. Section 2 discusses re-
lated work. In section 3 a short overview of the Pet Store web
application is outlined which is the case study used in this pa-
per. Section 4 discusses the top-down concerns and the ways
they could be implemented by aspects. The bottom-up ap-
proach is presented in section 5. In section 6 we discuss the
achieved results. Finally, Section 7 presents our conclusions
and future work.

We assume the reader has basic knowledge of both J2EE
and AspectJ.

2. Related Work

There are a number of publications reporting the possible
applications of aspects to J2EE applications.

Soares et al. [18] discuss their experiences in applying
the paradigm to a web-based information system’s distribu-
tion, persistence and transaction concerns. Kerston et al. [8]
share their experiences with a web-based educational system,
separating network context concerns in a distributed envi-
ronment. In [16], a component-based web-crawling system
was developed with and without aspects to be able to eval-
uate the differences of both approaches. The results favor
the aspect-oriented paradigm. Zhang and Jacobsen [20] ap-
ply aspect-oriented programming to middleware (Object Re-
quest Broker) demonstrating a reduction of the complexity of
the architecture. Kim and Clark [10] present a case study in
which they show that using the EJB framework modularizes
and minimizes crosscutting concerns such as security, persis-
tence and transaction management. On the other hand, Choi
[2] discusses the deficiencies of the EJB’s architecture and
tries to present an aspect-based server implementation. A
comparison of J2EE container managed and aspect-oriented
security is presented in [17]. Fabry [4] discusses the short-
comings of declarative transaction management in EJB with
respect to a clean separation of concerns and proposes an
aspect solution which can detect the need for transactional
methods and integrate all transactional handling in one unit.

Han and Hofmeister [6] concentrate on navigation con-
cerns of J2EE web applications and present an aspect-
oriented approach to separate these concerns. An analysis
of the crosscutting nature of the J2EE patterns is illustrated
by [15]. Finally, Cohen and Gil [3] propose a promising new
language, AspectJ2EE, geared towards the implementation
of J2EE application servers and applications. They use a
deploy-time mechanism to bind services to user applications
in the application server. This would enable the EJB devel-
opers to extend, enhance and replace the standard services
provided by the container.

None of these works however, cover how aspects influ-
ence evolution in J2EE environments, a gap we try to bridge
in the present paper. Our work differs from these approaches
in that: first, we adopt two different aspect mining tech-
niques to identify candidate aspects; second, we provide full
details of the resulting aspect-oriented code in order to pro-
vide a clear picture of the advantages and disadvantages; and
third, we explicitly evaluate the evolution benefits in terms
of change scenarios.

3. Pet Store

Pet Store2 is an example of a J2EE web application devel-
oped by Sun in order to illustrate all sorts of J2EE features.

2http://java.sun.com/blueprints/, Java Pet Store Demo 1.3.2

The main function of the application is to allow customers
to search and purchase pets through a web browser. The
application provides the customers with an interface (Web
site) to search through catalogs of products and order items.
The Admin client has an interface to view sales statistics and
manually accept or reject orders.

There are a number of reasons why we have chosen Pet
Store as our case study. First of all, Pet Store is a well-
designed web application using the latest J2EE specifica-
tions. There are numerous design patterns used in its archi-
tecture such as MVC, ServiceLocator, Data Access Object,
etc. It is a well-known open-source application. Further,
even though the functionality of the system seems simple,
the actual implementation is quite complex. The complexity
is mainly due to the fact that it is a demo presenting the best
and newest practices of J2EE application development. The
complexity is also a price to pay for maintainability, porta-
bility and scalability of the application. Finally, keeping all
this in mind, our reasoning is based on the assumption that if
we are able to identify crosscutting concerns and show ben-
efits of aspectizing those concerns in such a well-designed
system, then it should also be possible to find crosscutting
concerns in real life J2EE applications, many of which are in
practice not half as well-designed.

4. Top-down concerns

In this section we will consider Transaction management
which is known to be crosscutting from a top-down perspec-
tive. The Persistence and Security concerns in Pet Store are
thoroughly disscussed in our technical report [14], address-
ing how how each of them is implemented in J2EE environ-
ments and whether the implementation can be improved if
aspects are applied. Other relevant top-down concerns such
as Tier-cutting concerns (e.g. compression, encryption [3]),
Logging and Exception Handling, Persistence and Security
are left out of this paper because of space limitations. The
crosscutting nature of some of the J2EE patterns [15] can
also be examined from a top-down perspective.

4.1. Transaction management

In J2EE applications, transaction management is handled in
either a declarative or programmatic form. EJB provides
an elegant system for handling transaction management by
enabling the developers to declare the transactional func-
tionality in the EJB’s deployment descriptor. It is then the
container that has to take care of the actual implementation.
This approach separates the transaction management from
the core business logic of the application. As Fabry [4] dis-
cusses, one could manage to produce tangling and scattering
code even when using the declarative possibilities of EJB if
the functionality provided by the container is not satisfactory.

private void insertTemplate(HttpServletRequest request ,
HttpServletResponse response , String templateName)
throws IOException , ServletException {
try {

UserTransaction ut = null;
InitialContext ic = new InitialContext ();
UserTransaction ut = (UserTransaction)

ic.lookup("java:comp/UserTransaction ");
ut.begin();
context.getRequestDispatcher(templateName)
.forward(request , response);

ut.commit ();}
...

}

Figure 1. Method using Transaction management

Transaction management is also used in other parts of the
J2EE platform (e.g. Servlets) where no EJB is present. J2EE
does not provide any support for non-EJB parts regarding the
declarative transactional management.

We analyzed the Pet Store application code looking for
possible crosscutting transactional concerns. The application
makes exclusive use of the declarative transaction control in
the EJB tier without producing any tangling code. The EJB
deployment descriptor defines any call to methods that need
transactional support by setting the transaction attribute to
Required.

In the Web tier a programmatic approach is used in two
classes to manage transaction. The TemplateServlet be-
gins a UserTransaction before it forwards a request to
the template JSP and ends the transaction after the forward
has accomplished. See Figure 1. The doPost method of
the RcvrRequestProcessor Servlet uses the same transac-
tional code to update supplier inventories. In order to be
able to aspectize the transactional code, the doPost method
had first to be refactored because it was used in a nested
if statement. We moved the transactional handling into a
new method called updateAndSend. This refactored method
used the transactional code in a similar way as in Figure 1.

We decided to aspectize the transactional management in
the following way. First we defined an abstract aspect [11],
which has an around advice while keeping the pointcut
abstract . See Figure 2. Then we created a concrete transac-
tion aspect which inherits from the abstract aspect, providing
concrete definitions for the abstract pointcut. See Figure 3.

With this aspectized approach, the transactional control
code is modularized and is reusable. Further, the classes us-
ing the functionality are now oblivious of the transactional
code.

5. Bottom-up concerns

Aspect mining is the quest for identifying candidate aspects
in existing object-oriented systems and isolating them into
aspects, improving the comprehensibility of the system, and

public abstract aspect AbstractTransAspect {
abstract pointcut transactionOperations ();
void around () : transactionOperations () {

try {
InitialContext ic = new InitialContext ();
UserTransaction ut = (UserTransaction)

ic.lookup ("java:comp/UserTransaction ");
ut.begin();
proceed();
ut.commit ();}

...
}

Figure 2. Abstract Transaction Aspect

public aspect PetStoreTransactionAspect
extends AbstractTransAspect {
pointcut transactionOperations () :

execution (* com.. TemplateServlet.insertTemplate (..)
throws IOException , ServletException) ||

execution (*
com..RcvrRequestProcessor .updateAndSend (..)

throws IOException , ServletException);
}

Figure 3. Pet Store Transaction Aspect

thereby improving it’s maintainability and evolvability.
Aspect mining techniques can take a bottom-up approach

in which they try to examine the current implementation of
a software system, looking for patterns of tangling and scat-
tering code which would make good aspect candidates. This
bottom-up approach could also be applied to J2EE applica-
tions to find and extract crosscutting concerns.

In this section we will look at two aspect mining tech-
niques and see how each technique could be used in J2EE en-
vironments discussing the possible benefits of applying each
approach.

5.1. Fan-In Analysis

Fan-in analysis [13] takes a bottom-up approach, analyzing
the code for certain crosscutting symptoms. This technique
defines the number of distinct method calls to a given method
as the fan-in number. Methods having a high fan-in value are
likely to be crosscutting methods and should be further ex-
amined to see whether they could be considered as candidate
aspects.

The Pet Store application code was analyzed by [13],
identifying a number of candidate aspects for methods with
a fan-in of 8 and above.

Next we will present an aspect-oriented implementation
of the identified candidate aspects in order to discuss the ef-
fects the refactoring would have on the maintainability and
evolvability of the application.

Exception Wrapping Exception wrapping is a cross-
cutting concern that affects a number of classes in

public EJBLocalHome getLocalHome(String jndiHomeName)
throws ServiceLocatorException {

EJBLocalHome home = null;
try {

if (cache.containsKey(jndiHomeName)) {
home = (EJBLocalHome) cache.get(jndiHomeName);}

else {
home = (EJBLocalHome) ic.lookup(jndiHomeName);
cache.put(jndiHomeName , home);}

} catch (NamingException ne) {
throw new ServiceLocatorException (ne);}

return home;
}

Figure 4. Exception wrapping in Pet Store

public aspect ExceptionWrappingAspect {
declare soft : NamingException : call (* *.*(..)

throws NamingException)
|| call (*.new(..) throws NamingException)
&& within (*. ServiceLocator);

after() throwing (SoftException ex) throws
ServiceLocatorException
: execution (* *.*(..) throws

ServiceLocatorException)
&& within (*. ServiceLocator) {
throw new ServiceLocatorException (

ex.getWrappedThrowable ());}
}

Figure 5. Exception wrapping in AspectJ

Pet Store. The ServiceLocator classes for in-
stance catch the NamingException and re-throw
ServiceLocatorException. This is a typical instance of
the Business Delegate J2EE pattern [1]. Every method in
these classes catches exceptions thrown by the underlying
implementation and re-throws an application-specific ex-
ception requiring a try/catch block in each method. Normal
refactoring of these identical try/catch blocks is not possible
in object-oriented languages. This logic duplication is a
result of a language limitation. Aspects can however be used
to refactor this pattern of scattering code [12, 11].

To refactor the exception wrapping logic, we implement
an aspect in which the checked-exceptions are declared soft.
This way the exception will be wrapped in an unchecked-
exception (SoftException) when thrown. An after throw-
ing advice is then used to catch any SoftException thrown
and throw a new ServiceLocatorException wrapping the
original exception obtained.

Figure 4 shows one of the web ServiceLocatormethods
in its original form. Applying the aspect presented in Figure
5 would allow us to refactor the method (and all the other
methods in the class). Figure 6 shows the refactored method.

As can be seen, the refactoring of the exception wrap-
ping concern results in a simple aspect defining the wrap-
ping strategy, and cleaner business logic that is not tangled
with wrapping anymore. This not only leads to a reduction
in code size of up to 20% in the refactored classes, it also im-
proves evolvability of both the business logic and the wrap-
ping strategy.

public EJBLocalHome getLocalHome(String jndiHomeName)
throws ServiceLocatorException {
EJBLocalHome home = null;
if (cache.containsKey(jndiHomeName)) {

home = (EJBLocalHome) cache.get(jndiHomeName);}
else {

home = (EJBLocalHome) ic.lookup(jndiHomeName);
cache.put(jndiHomeName , home);}

return home;
}

Figure 6. Aspectized by ExceptionWrappingAspect

ServiceLocator & Singleton A ServiceLocator J2EE pat-
tern [1] acts as a central point for obtaining and caching a ser-
vice. This pattern implemented in classes ServiceLocator
was also identified as a candidate aspect in Pet Store. There
are two ServiceLocator classes in Pet Store one of which
(JMS) is implemented as a Singleton and the other one (EJB)
is (mistakenly) not.

The ServiceLocator can be approached in two ways. One
could argue that because the getInstance method has a
high fan-in, the methods calling the method should be refac-
tored in a way that no explicit calling is needed. There
are techniques which make this approach possible. For in-
stance, Spring’s3 inversion of control allows us to pass the
ServiceLocator instance reference to our classes in a sub-
tle manner. However, because of the non-systematic na-
ture of the methods, it is not possible to create a unified
aspect which would allow us to refactor all the calls to the
getInstance method.

The second approach, presented by [7, 15], tries to refac-
tor the Singleton nature of the ServiceLocator class it-
self. This means removing the private constructor and the
getInstance of the class and instead providing a public
constructor which is implemented as an around advice, ini-
tializing the instance on the first call and returning it on all
constructor calls.

The Singleton class was refactored using the aspect shown
in Figure 7. As can be seen, the aspect captures all calls to
the constructor using the around advice. The advice then
creates the static instance if not already created and initial-
izes the object; otherwise the instance is returned without
manipulation.

Now the question is what the consequences are of this
refactoring step. Hiding the Singleton nature of the class
could confuse J2EE developers. This could also lead to vi-
olations of the singleton nature, if, for example, a subclass
provides cloning functionality. [15,] mention a workaround
for this possible problem.

On the other hand one could argue that hiding the Single-
ton nature of the class makes the application oblivious in the
sense that the clients using the ServiceLocator class do not
and should not care about the implementation details of the
service.

3http://www.springframework.org/

privileged public aspect LocatorAspect {
private static ServiceLocator service;
pointcut serviceLocator ():

call (*. ServiceLocator.new())
&& !within(LocatorAspect);

Object around()
throws ServiceLocatorException : serviceLocator() {
synchronized (service) {

if (service == null) {
service = new ServiceLocator ();
try {

service.ic = new InitialContext ();
service.cache =

Collections.synchronizedMap(new HashMap ());
} catch (NamingException e) {

service = null;
throw new ServiceLocatorException (e);

} } }
return service ;

} }

Figure 7. Locator aspect

Precondition Checking Precondition checking often re-
quires duplicated code if the conditions are common to many
methods. In Pet Store many EJB classes implementing
EntityBean use a Plain Old Java Object (POJO) of their
own to hold the actual data. All these classes have a static
fromDOM method which expects a DOM node as input pa-
rameter and returns an instance of the corresponding class
made from the node. The node has to have a certain structure
for the method to be able to parse it to the right class. The
main precondition states that the name of the first element of
the DOM has to coincide with the value of a static variable
defined in the class. The Address class, for instance, has a
static variable called XML ADDRESS which has a string value
of ”Address”. This means the first element of the DOM has
to be called ”Address”, otherwise the check will through an
XMLDocumentException.

The parameter checks occur at the beginning of the meth-
ods and are similar to:

public static $OBJECT$ fromDOM(Node node)
throws XMLDocumentException {
if (node.getNodeType() == Node.ELEMENT_NODE
&& ((Element) node).getTagName().equals($PARAMETER$)) {
//OK proceed
...

}
else {
throw new XMLDocumentException($PARAMETER$

+ " element expected.");
}}

where $OBJECT$ is the corresponding class type (e.g. Ad-
dress) and $PARAMETER$ is the name of the static variable
holding the expected name of the first element.

Conventional implementations of this precondition re-
quire adding identical code conditional checks into many
methods. With aspect-oriented techniques, we can refac-
tor such contract checks into a separate aspect. Figure 8
shows the aspect which handles the precondition checks.
We define the pointcut as calls to the fromDOM methods
and use a before advice to check the precondition. The

public aspect XMLPreCheck {
pointcut fromDOM (Node node) :

call(* com.sun.j2ee.blueprints.*.ejb.*.fromDOM(Node)
throws XMLDocumentException) && args(node);

before(Node node) throws XMLDocumentException :
fromDOM(node) {

if (! isPreChecked(node , thisJoinPointStaticPart)) {
throw new XMLDocumentException (

getParameterValue (thisJoinPointStaticPart)
+ " element expected .");}}

private boolean isPreChecked(Node node ,
JoinPoint .StaticPart joinPoint) {

return (node.getNodeType() == Node.ELEMENT_NODE
&& ((Element) node).getTagName().equals(

getParameterValue (joinPoint)));}

private String getParameterValue (
JoinPoint .StaticPart joinPoint) {

String className =
joinPoint .getSignature (). getDeclaringType ().getName ();

return className .substring (
(className .lastIndexOf(’.’) + 1);}

}

Figure 8. Precondition Check Aspect

tricky part in this advice is to find the value of the ex-
pected variable on which the check has to be carried out.
The thisJoinPointStaticPart gives us the correspond-
ing class information and using reflection on the class, we
can find the required parameter. By analyzing the code, a
pattern can be seen in the value of the required variable; i.e.,
the value of the static variable is the same as the class-name.
This means we can use the class-name to check our precon-
dition and that is exactly what we have done. This, however,
implicitly defines a contract by which all future classes of the
same type have to abide.

Using this precondition aspect we are able to refactor out
the precondition checks from nine classes in Pet Store.

5.2. Interface Concerns

Interfaces and their implementations can be crosscutting.
When the implementation of an interface is distributed across
many classes in a system, aspect-oriented programming en-
ables us to extract and locate it in an aspect, increasing the
modularity of the system. In order to investigate the behav-
ior of this crosscutting concern in J2EE applications, we an-
alyzed the Pet Store application, looking for possible aspect
candidates. The results are discussed here.

Extracting Interface Implementations The first con-
cern that was identified as a possible aspect candidate
was found because four interfaces (Event, EJBAction,
HTMLAction and EventResponse) had a default im-
plementation (EventSupport, EJBActionSupport,
HTMLActionSupport and EventResponseSupport). Other
classes then extended these support classes instead of im-
plementing the interfaces. While Pet Store avoids duplicated
code using this technique, this approach fails for the classes

public interface Event {
public void setEJBActionClassName (

String ejbActionClassName);
public String getEJBActionClassName ();
...
static abstract aspect EventAspect {

private String Event.ejbActionClassName = null;
public String Event.getEJBActionClassName () {

return ejbActionClassName ;}
public void Event.setEJBActionClassName (

String _ejbActionClassName) {
ejbActionClassName = _ejbActionClassName ;}

...
} }

Figure 9. Aspectized Event interface

that are already extending another class or for classes that
need to extend another class.

Using the refactoring technique suggested by [11], we are
able to make use of the inter-type declaration mechanism
to write aspects which introduce the default implementation
into the identified interfaces.

Figure 9 shows the aspectized Event interface. The inner
aspect functions as an implementation of the interface. This
way the EventSupport class becomes obsolete. The main
advantage of this refactoring is that all the classes which
extended the EventSupport class can now implement the
Event interface without the need to implement the declared
methods in the interface (if they are satisfied with the default
implementation of course) and more importantly, the classes
can now extend another class if needed.

Interface Migrating Interface migration tries to mine in-
terface implementations which can be regarded as crosscut-
ting concerns and refactor them to aspects. Tonnela et al.
[19] represent a mining technique based on external package
identification, string matching for interfaces names, cluster-
ing and unpluggability of the methods.

Further analysis of the application code, while keeping
these indicators in mind, reveals that there are many class-
es/interfaces which implement/extend the Serializable in-
terface. This is a common character of J2EE applications
because of their distributed nature. From a logical point of
view, this character does not really belong to the principal
decomposition of the application [19] and therefore it could
be treated as an aspect. An aspect capturing the serializable
concern is the following:

declare parents : ProfileInfo implements Serializable;
declare parents : HTMLAction extends Serializable;
...

where ProfileInfo is a class and HTMLAction is an inter-
face. In Pet Store the purpose of using Serializable is sim-
ply to identify classes whose objects are serializable. This
means the private writeObject and readObject methods
are not customized and no field is marked as transient.
Private methods cannot be introduced into target classes in
AspectJ which means we would not be able to fully aspec-

tize the serialization if Pet Store did customize the mentioned
methods or used transient fields.

A total of 29 classes and 6 interfaces were declared to im-
plement/extend the Serializable interface within this as-
pect. The explicit implements and extends declarations in
the classes and interfaces were removed afterwards.

Further, EJB rules demand the extension of
EJBLocalObject for the component interface and
EJBLocalHome for the home interface. Pet Store has
13 component interfaces with a name ending in Local.
There are also 13 home interfaces with a name ending
in LocalHome. We have aspectized these two interface
concerns as follows:

declare parents : com.sun.j2ee.blueprints.*.ejb.*.*Local
implements javax.ejb.EJBLocalObject;

declare parents : com.sun.j2ee.blueprints.*.ejb.*.*LocalHome
implements javax.ejb.EJBLocalHome

In this aspectized version, the two local EJB interfaces
are modularized in a single aspect. The serialization concern
is also handled in a single separate unit, resulting in an in-
creased degree of modularization. This enables developers
to get a better overall view of the classes implementing these
interfaces.

6. Discussion

This section reflects on the results we obtained by studying
the crosscutting nature of the top-down and bottom-up con-
cerns. Table 1 shows an overview of the studied concerns in
Pet Store. Each concern is examined against a set of proper-
ties:

Crosscutting Has the concern a crosscutting nature in the
application? As it can be seen all the concerns are crosscut-
ting in some way.

Aspectizable From the crosscutting concerns, which ones
are aspectizable? A concern is aspectizable when its cross-
cutting nature can be resolved by applying aspect-oriented
refactoring. It is interesting to see that all the crosscut-
ting concerns are aspectizable which shows that the aspect-
oriented paradigm is suited for tackling crosscutting prob-
lems.

Code Reduction Logic duplication is one of the manifes-
tations of crosscutting concerns and aspect-oriented tech-
niques are experts in minimizing that. Aspectizing the Ex-
ception Wrapping concern resulted in a 20% code reduction
in the affected classes. Aspectizing the Precondition Check-
ing concern allowed us to completely remove the check code
from 9 classes, each class having one affected method. It
is worth noting that only three of the aspectized concerns
showed a reduction in code size. This implies that aspect-
oriented programming has a much broader purpose than only
code reduction.

Obliviousness Obliviousness states that neither the existence
nor the execution of the aspect code is apparent by examin-
ing the body of the base code. Obliviousness is desirable
because it allows greater separation of concerns in the ap-
plication development process [5]. Five of the aspectized
concerns resulted in obliviousness.

Reliability In certain cases, the use of an aspect makes it
harder to make a particular kind of mistake. For example,
the generic pointcut for the Exception Wrapping aspect en-
sures that new methods automatically have the naming ex-
ception wrapped into a ServiceLocator exception. For the
same reason, faults are less likely for the Transaction and
Precondition Checking concerns.

Modularity Aspectized modularity enables us to reduce tan-
gling, multiple concerns intermixed, and scattering, spread
of code for a concern, which in turn simplifies maintenance
and evolution. Modularity obtained in four of the concerns
in this case study has resulted in code that is more local-
ized, less coupled, and has better cohesion. Transaction,
for instance, was aspectized into a new module, enabling
the removal of corresponding code from classes that were
merely using Transaction, i.e., transaction management was
not their primary function. Interface Migration is another ex-
ample of achieving better modularity. The serialization con-
cern was moved to an aspect, enabling us to remove the scat-
tering code in all classes that need to be serializable. It has
made the interface implementation transparent to the classes
that were using it explicitly before the aspectization process.
This allows us to add the serialization concern to new classes
easily and also gives us a clear overview of all the classes
using this particular concern, increasing design and code un-
derstandability.

Evolvability Software evolution is a process that either in-
troduces new requirements into an existing system, or mod-
ifies the system if the requirements change or were not cor-
rectly implemented. We consider evolvability improvements
by presenting possible change scenarios in the life-cycle of
the application:

Transaction: Imagine we decide to use a different trans-
action management API. In the conventional implementation
all classes using the transaction code had to be modified. In
the new aspectized version, however, the change will take
place in only one aspect. Further adding the functionality
to a new class is a matter of expanding the pointcut in the
transactional aspect.

Exception Wrapping: Being able to modularize the Ex-
ception Wrapping concern allows us to have a uniform way
of dealing with all the affected methods; i.e., there will be no
inconsistencies in the type of wrapped exception thrown or
the way exceptions are logged. The base code is separated
from the aspect code which enables us to alter one indepen-
dent of the other.

Concern C
ro

ss
cu

tt
in

g

A
sp

ec
ti

za
bl

e

C
od

e
R

ed
uc

ti
on

O
bl

iv
io

us
ne

ss

R
el

ia
bi

lit
y

M
od

ul
ar

it
y

E
vo

lv
ab

ili
ty

Transaction X X X X X X X

Exception Wrapping X X X X X X X

ServiceLocator X X X X

Precondition Checking X X X X X X X

Interface Extraction X X X X

Interface Migration X X X X X

Table 1. Studied concerns in Pet Store

Precondition Checking: Precondition checking is one of
those concerns with a volatile requirement that can easily
change over time. If the requirement change states that, for
instance, the check has to be extended on more parameters,
it is now much easier to adapt the implementation.

ServiceLocator: A possible scenario is that we decide
to refactor our ServiceLocator class not to be a Single-
ton anymore because Singleton makes it very hard to write
unit tests, i.e, Singleton makes it very difficult to follow the
testing independence rule. Because the application is now
oblivious of the Singleton nature, this change will not affect
the clients using the ServiceLocator class.

Interface Concern: We have a central module defining
all the classes that implement a certain interface using as-
pects. We can also have a default implementation of the
corresponding interface through aspects. Imagine we write
a new class that needs to implement the interface. We then
simply add the name of the new class to the list of the de-
clared classes that implement the interface in the aspect. In-
terface Extraction has also given us the ability to make use
of multiple inheritance if needed in the future.

Costs Utilizing aspect-oriented programming is not without
costs. While aspects improve modularity, they can increase
a system’s complexity. For instance, the transaction con-
cern is aspectized using an abstract aspect and a concrete
aspect. Generally speaking, this is more complex to compre-
hend than the original simple implementation. Understand-
ability is also at stake when aspects do not achieve full obliv-
iousness. For example, a pointcut may rely on a particular
naming pattern, which the developer, not aware of the aspect
code, may break by applying a method renaming.

7. Concluding Remarks

Evaluation The key lessons learned from our experiments
are the following. First, many concerns that are by nature
crosscutting are well addressed by J2EE’s container mecha-
nism. Second, in those cases where the container mechanism
is not sufficiently powerful or cannot be utilized, such as for
the transaction mechanism adopted, an aspect-oriented im-
plementation of these concerns does offer benefits. Third,

crosscutting concerns in J2EE systems include generic ones
as well, such as logging (not discussed), or precondition
checking and interface extraction. Fourth, while adopting as-
pects in J2EE applications does have clear benefits, these are
relatively small (as suggested by our example concerns and
scenarios) and certainly not of an order of magnitude. Ex-
trapolating some of the numbers we found, we suspect that
there are approximately 25 reasonable aspect opportunities
in Pet Store, on a total of 283 classes/interfaces. We do ex-
pect, however, that in real life J2EE applications the need
to circumvent J2EE’s container mechanism will be much
stronger (for example due to performance limitations), lead-
ing to significant benefits from the use of aspect-orientation
in such cases.

Contributions This paper has presented the results we
have obtained by aspectizing a number of top-down and
bottom-up crosscutting concerns in a J2EE case study. We
have provided the full details of the resulting aspect-oriented
code in order to outline a clear view of the advantages and
disadvantages. The results show that even though proper use
of design patterns and container-managed services helps en-
capsulation in many situations, we still find the repetition and
concern-mixing phenomena even in well-designed J2EE sys-
tems. We have shown how aspect-oriented techniques pro-
vide a framework in which these crosscutting concerns can
easily be modularized, allowing greater separation of con-
cerns which in turn increases the evolvability of the system.

Future Work Our future work will focus on studying the
crosscuttingness of concerns in a number of real world J2EE
applications. We will try to apply a wider range of as-
pect mining techniques in order to identify aspect candi-
dates. Our research will also examine the convenience of
using other aspect-oriented tools (besides AspectJ) such as
AspectWerkz4 in J2EE environments. We will also provide
access to APetStore, an aspect-oriented refactoring of the Pet
Store application, through our Web site, which will be further
used to experiment with aspects.

Acknowledgements We would like to thank Marius
Marin, Magiel Bruntink and Gertjan van Oosten for their
reviews, advice and feedback. This paper received partial
support from SenterNovem, project Single Page Computer
Interaction (SPCI).

References
[1] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns. Sun Microsystems, Inc.,

USA, 2003.

[2] Jung Pil Choi. Aspect-Oriented Programming with Enterprise JavaBeans. In
EDOC ’00: Proceedings of the 4th International conference on Enterprise Dis-
tributed Object Computing, page 252. IEEE Computer Society, 2000.

4http://aspectwerkz.codehaus.org/

[3] Tal Cohen and Joseph (Yossi) Gil. AspectJ2EE = AOP + J2EE: Towards an As-
pect Based, Programmable and Extensible Middleware Framework. In ECOOP
- Object-Oriented Programming, LNCS 3086, pages 219–243. Springer-Verlag,
2004.

[4] J. Fabry. Transaction management in EJBs: Better separation of concerns with
AOP. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd AOSD Workshop on
Aspects, Components, and Patterns for Infrastructure Software (ACP4IS), Victo-
ria, Canada, 2004. University of Victoria.

[5] Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is
Quantification and Obliviousness. In OOPSLA Workshop on Advanced Separa-
tion of Concerns,, 2000.

[6] Minmin Han and Christine Hofmeister. Separation of Navigation Routing Code
in J2EE Web Applications. In ICWE, pages 221–231, 2005.

[7] J. Hannemann and G. Kiczales. Design pattern implementation in Java and As-
pectJ. In Proceedings of the 17th Annual ACM conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 161–
173, Boston, MA, 2002. ACM Press.

[8] Mik Kersten and Gail C. Murphy. Atlas: a case study in building a web-based
learning environment using aspect-oriented programming. In OOPSLA ’99: Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 340–352. ACM Press, 1999.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In 11th Europeen Conf. Object-Oriented
Programming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[10] H. Kim and S. Clarke. The relevance of AOP to an applications programmer
in an EJB environment. In First International Conference on Aspect-Oriented
Software Development (AOSD) Workshop on Aspects, Components, and Patterns
for Infrastructure Software (ACP4IS), 2002.

[11] R. Laddad. Aspect-oriented refactoring. www.theserverside.com, December
2003.

[12] M. Lippert and C.V. Lopes. A study on exception detection and handling using
aspect-oriented programming. In Proceedings of the 22nd International Confer-
ence on Software Engineering (ICSE), pages 418–427, Boston, MA, 2000. ACM
Press.

[13] M. Marin, A. van Deursen, and L. Moonen. Identifying aspects using fan-in
analysis. In Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE2004)., pages 132–141. IEEE Computer Society, 2004.

[14] A. Mesbah and A. Deursen. Crosscutting Concerns in J2EE applications. Tech-
nical Report SEN-R05xy, CWI, 2005.

[15] T. Murali, R. Pawlak, and H. Younessi. Applying aspect orientation to J2EE
business tier patterns. In Y. Coady and D. Lorenz, editors, Proc. of the 3rd
AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Soft-
ware (ACP4IS), Victoria, Canada, 2004. University of Victoria.

[16] Odysseas Papapetrou and George A. Papadopoulos. Aspect oriented program-
ming for a component-based real life application: a case study. In SAC ’04:
Proceedings of the 2004 ACM Symposium on Applied Computing, pages 1554–
1558. ACM Press, 2004.

[17] P. Slowikowski and K. Zielinski. Comparison study of aspect-oriented and con-
tainer managed security. In AAOS2003: Analysis of Aspect Oriented Software.
Workshop held in conjunction with ECOOP, 2003.

[18] Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing distribu-
tion and persistence aspects with AspectJ. In OOPSLA ’02: Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 174–190. ACM Press, 2002.

[19] Paolo Tonella and Mariano Ceccato. Migrating interface implementation to as-
pects. In Proceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM’04), pages 220–229. IEEE Computer Society, 2004.

[20] C. Zhang and H-A. Jacobsen. Quantifying aspects in middleware platforms. In
Proc. 2nd Int. Conf. on Aspect-Oriented Software Development (AOSD-2003),
pages 130–139. ACM Press, March 2003.

