twelfth
international
conference
an
aultonomous
agents an

JETIE

Overview

Time Topics Speaker
8:30 - Intro, single-agent planning, Matthijs Spaan
10:30 multiagent models
11:00 - Optimal Dec-POMDP solvers Frans Oliehoek
12:30
13:30 - Approximate solvers Chris Amato
15:30

Structured problems Stefan Witwicki
16:00 - Communication, learning,
17:30 applications

Introduction

Introduction

v

Al: develop intelligent agents.

Cooperating multiagent systems.

Problem: planning how to act.

Joint payoff but decentralized actions and observations.

v

v

v

environment

action
5 Q 3 m
\\// A\

stat

action

D

Agents

» An agent is a (rational) decision maker who is
able to perceive its external (physical)
environment and act autonomously upon it
(Russell and Norvig, 2003).

» Rationality means reaching the optimum of a
performance measure.

» Examples: humans, robots, some software
programs.

Application domains

Possible application domains:
» Multi-robot coordination

» Space exploration rovers iverstein et al., 2002)
> Helicopter ﬂlghtS (Pynadath and Tambe, 2002)
> Navigation (Emery-Montemerlo et al., 2005; Spaan and Melo, 2008)

v

Load balancing for decentralized queues (cogil et al., 2004)
Multi-access broadcast channels (ooi and wornel, 1996)

v

v

Network rOUting (Peshkin and Savova, 2002)
Sensor network management (air et al, 2005)

v

Example: The DEC-Tiger problem

» A toy problem:
decentralized tiger (Nair
et al., 2003).

» Opening correct door:
both receive treasure.

» Opening wrong door:
both get attacked by a
tiger.

» Agents can open a door, ﬂi \
or listen.

» Two noisy observations:

hear tiger left or right.

» Don’t know the other’s
actions or observations.

Example: Sensor network problems

—
fu
-
N

g=--
7

1
-
AT
-t
¢

()
‘\;‘ .
[hm"

4 ! .
» Sensor networks for Elig
» Target tracking (Nair
et al., 2005; Kumar and . E
Zilberstein, 2009a) '
» Weather phenomena
(Kumar and Zilberstein,

2009b)

» Two or more cooperating
sensors.

Decision-theoretic planning

» Decision-theoretic planning tackles uncertainty in sensing
and acting in a principled way.

-

» We need to model: ; tﬁl_ imE
» each agent’s actions 2?18 n=
> their sensors A 72 @
> their environment o) t[

» their task Qﬁgﬁg : Jﬁ]:{m

» Popular for single-agent planning under uncertainty
(MDPs, POMDPs).

7

Decision-theoretic planning

Assumptions:

» Sequential decisions: problems are formulated as a
sequence of discrete “independent” decisions.

» Markovian environment: the state at time t depends only
on the events at time t — 1.

» Stochastic models: the uncertainty about the outcome of
actions and sensing can be accurately captured.

» Objective encoding: the overall objective can be encoded
using cumulative (discounted) rewards over time steps.

Multiagent planning problems

Aspects:

» on-line vs. off-line

» centralized vs. distributed
» planning
» execution

» cooperative vs. self-interested
» observability
» communication

Related previous work

» Group decision theory in economics, team theory warschax,
1955; Papadimitriou and Tsitsiklis, 1982)

» Decentralized detection (sitsikis and Athans, 1985; Tsitsiklis, 1988)

» Optimization of decentralized systems in operations
research (wisenhausen, 1971; Sandell et al., 1978)

» Communication strategies (varaiya and Walrand, 1978; Xuan et al., 2001; Pynadath
and Tambe, 2002)

» Approximation algorithms (pesnkin et al., 2000; Guestrin et al., 2002; Nair et al., 2003;

Emery-Montemerlo et al., 2004)

Planning

Planning:
» A plan tells an agent how to act.

» For instance
» A sequence of actions to reach a goal.
» What to do in a particular situation.

» We need to model:

» the agent’s actions
» its environment
» its task

We will model planning as a sequence of decisions.

Classic planning

X

RO
1

Classic planning: sequence of actions from start to goal.
Task: robot should get to gold as quickly as possible.
Actions: — | « 1

Limitations:

» New plan for each start state.
» Environment is deterministic.

v

v

v

v

Classic planning

X

RO
1

Classic planning: sequence of actions from start to goal.
Task: robot should get to gold as quickly as possible.
Actions: — | « 1

Limitations:

» New plan for each start state.
» Environment is deterministic.

Three optimal plans: — — |, = | —, | — —.

v

v

v

v

v

Conditional planning

» Assume our robot has noisy actions (wheel slip,
overshoot).

» We need conditional plans.
» Map situations to actions.

Decision-theoretic planning

-0.1 |-0.1 |-0.1 [-0.1 |-0.1

-0.1 |-01 10 |-0.1 |[-0.1

» Positive reward when reaching goal, small penalty for all
other actions.

» Agent’s plan maximizes value: the sum of future rewards.

» Decision-theoretic planning successfully handles noise in
acting and sensing.

Decision-theoretic planning

Plan #1:
= | > | 4

Reward:
-0.1 |-0.1 [-0.1 [-0.1 |-0A1
—0.1 |-0.1 10 ([-0.1 [-0.1

Decision-theoretic planning

Values of this plan:

21?7

10

Reward:
-0.1 |-0.1 |-0.1 [-0.1 |-0.1
—0.1 |-0.1 10 |-0.1 [-0.1

Decision-theoretic planning

Values of this plan:

9.719.819.9

10

Reward:
-0.1 |-0.1 [-0.1 |-0.1 |-0.1
-0.1 [-01 10 ([-0.1 [-0.1

Decision-theoretic planning

Plan #2:
> | > |> >
<+ | <

Reward:
-01 |-0.1 |-0.1 [-0.1 |-0.1
—-0.1 |-01 10 |-0.1 |-01

Decision-theoretic planning

Values of this plan:

222|207
10 2 | ?

Reward:
-0.1 |-0.1 |-0.1 [-0.1 |-0.1
—-0.1 |-01 10 ([-0.1 [-0.1

Decision-theoretic planning

Values of this plan:

9.319.419.519.619.7
1019.9|9.8
Reward:

—0.1 |01 |-041 |01 |-0.1

~0.1 |-0.1 | 10 |-01 |-0.1

Decision-theoretic planning

Optimal values (encode optimal plan):

9.7

9.8

9.9

9.8

9.7

9.8

9.9

10

9.9

9.8

Reward:

—0.1

—0.1

—0.1

—0.1

—0.1

—0.1

-0.1

10

-0.1

-0.1

References |

R. Cogill, M. Rotkowitz, B. V. Roy, and S. Lall. An approximate dynamic programming approach to decentralized
control of stochastic systems. In Proceedings of the 2004 Allerton Conference on Communication, Control, and
Computing, 2004.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In Proc. of Int. Conference on Autonomous Agents and Multi Agent
Systems, 2004.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game theoretic control for robot teams. In
Proceedings of the IEEE International Conference on Robotics and Automation, 2005.

C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In Advances in Neural Information
Processing Systems 14. MIT Press, 2002.

A. Kumar and S. Zilberstein. Constraint-based dynamic programming for decentralized POMDPs with structured
interactions. In Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, 2009a.

A. Kumar and S. Zilberstein. Event-detecting multi-agent MDPs: Complexity and constant-factor approximation. In
Proc. Int. Joint Conf. on Atrtificial Intelligence, 2009b.

J. Marschak. Elements for a theory of teams. Management Science, 1(2):127-137, 1955.

R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella. Taming decentralized POMDPs: Towards efficient
policy computation for multiagent settings. In Proc. Int. Joint Conf. on Atrtificial Intelligence, 2003.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. 2005.

J. M. Ooi and G. W. Wornell. Decentralized control of a multiple access broadcast channel: Performance bounds. In
Proc. of the 35th Conference on Decision and Control, 1996.

C. H. Papadimitriou and J. N. Tsitsiklis. On the complexity of designing distributed protocols. Information and
Control, 53(3):211-218, 1982.

L. Peshkin and V. Savova. Reinforcement learning for adaptive routing. In Proc. of the Int. Joint Conf. on Neural
Networks, 2002.

L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling. Learning to cooperate via policy search. In Proc. of
Uncertainty in Artificial Intelligence, 2000.

References Il

D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: Analyzing teamwork theories
and models. Journal of Artificial Intelligence Research, 16:389—423, 2002.

S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, 2nd edition, 2003.

J. Sandell, N., P. Varaiya, M. Athans, and M. Safonov. Survey of decentralized control methods for large scale
systems. IEEE Transactions on Automatic Control, 23(2):108—128, Apr 1978.

M. T. J. Spaan and F. S. Melo. Interaction-driven Markov games for decentralized multiagent planning under
uncertainty. In Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, pages 525-532, 2008.

J. Tsitsiklis. Decentralized detection by a large number of sensors. Mathematics of Control, Signals and Systems, 1
(2):167-182, 1988.

J. Tsitsiklis and M. Athans. On the complexity of decentralized decision making and detection problems. /EEE
Transactions on Automatic Control, 30(5):440-446, 1985.

P. Varaiya and J. Walrand. On delayed sharing patterns. IEEE Transactions on Automatic Control, 23(3):443—445,
1978.

H. Witsenhausen. Separation of estimation and control for discrete time systems. Proceedings of the IEEE, 59(11):
1557-1566, Nov. 1971.

P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent cooperation: Model and experiments.
In Proc. of the Fifth Int. Conference on Autonomous Agents, 2001.

S. Zilberstein, R. Washington, D. Bernstein, and A. Mouaddib. Decision-theoretic control of planetary rovers. In
Plan-Based control of Robotic Agents, volume 2466 of LNAI, pages 270-289. Springer, 2002.

Markov Decision Processes

Sequential decision making under uncertainty

» Uncertainty is abundant in real-world planning domains.
» Bayesian approach = probabilistic models.

Dy &

Main assumptions:
Sequential decisions: problems are formulated as a sequence
of “independent” decisions;

Markovian environment: the state at time t depends only on
the events at time t — 1;

Evaluative feedback: use of a reinforcement signal as
performance measure (reinforcement learning);

Transition model

» For instance, robot motion
is inaccurate.

» Transitions between states
are stochastic.

» p(s'|s, a) is the probability
to jump from state s to
state s’ after taking
action a.

4—

R allik
@

ﬂﬂw
4l

MDP Agent

environment

agent action a

obs. s state s Q

reward r

MDP Agent

environment

action a
™

p(s'ls, a)

obs. s state s Q

reward r

MDP Agent

environment

action a
™
R(s, a)

obs. s state s Q

reward r

Optimality criterion

For instance, agent should maximize the value
h
E[> 1R, (1)
t=0

where
» his the planning horizon, can be finite or co
» ~is adiscountrate, 0 <~ < 1

Reward hypothesis (Sutton and Barto, 1998):
All goals and purposes can be formulated as the maximization
of the cumulative sum of a received scalar signal (reward).

Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;
Bertsekas, 2000):

Time t is discrete.

State space S.

Set of actions A.

Reward function R: S x A— R.

Transition model p(s’|s, a), Ta: S x A— A(S).
Initial state sy is drawn from A(S).

The Markov property entails that the next state s;, 1 only
depends on the previous state s; and action a;:

v

v

v

v

v

v

P(St11]St, St—1,- -, S0, @t 8t—1,---,80) = P(St41]St, ar).

A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

-

Load/Unload

1??2 3

-

Material

Move Left/Move Right

&ém

Building facility

(thanks to F. Melo)

Load/Unload as an MDP

yumm.d
% ﬁ%L ‘5 / - '
Material Move Left/Move Right Building facility

» States: S = {1 u,2y,3y, 14, 2L73L};
1y Robot in position 1 (unloaded);
2y Robot in position 2 (unloaded);
3y Robot in position 3 (unloaded);
1, Robot in position 1 (loaded);
2, Robot in position 2 (loaded);
3. Robot in position 3 (loaded)

» Actions: A = {Left, Right, Load, Unload};

Load/Unload as an MDP (1)

» Transition probabilities: “Left”/“Right” move the robot in the
corresponding direction; “Load” loads material (only in
position 1); “Unload” unloads material (only in position 3).
Ex:

(2.,Right) — 3y;
(8£,Unload) — 3y;
(1.,Unload) — 1;.

» Reward: We assign a reward of +10 for every unloaded
package (payment for the service).

Load/Unload as an MDP (2)

» For each action a € A, T3 is a matrix.

Ex:)
0

TRight =

[eoNeNelNol

OO OO =

OO =+ =20
O OO OOoOOo

» Recall: S={1y,24,3u,1.,2.,3.}.

[eNe o Ne N

- - O O OO0

Load/Unload as an MDP (3)

» The reward R(s, a) can also be represented as a matrix
Ex:

O OO OO0

O OO OOoOOo
O OO O oo
O OO O OO

X
<)

S= {1 U, 2u, 3u, 1L, 2L, 3L}, A= {Left, Right, Load, Unload}

Policies and value

» Policy «: tells the agent how to act.

» A deterministic policy 7 : S — Ais a mapping from states
to actions.

» Value: how much reward E[Efzo v'Ry] does the agent
expect to gather.

» Value denoted as Q™ (s, a): startin s, do a and follow =
afterwards.

Policies and value (1)

v

Extracting a policy = from a value function Q is easy:

7(s) = argmax Q(s, a). (3)
acA

v

Optimal policy 7*: one that maximizes E[ZLO Yy Ry] (for
every state).

In an infinite-horizon MDP there is always an optimal
deterministic stationary (time-independent) policy 7*.

v

v

There can be many optimal policies «*, but they all share
the same optimal value function Q*.

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

OO OO OoOOo
OO OO oOoOo
OO OO OoOOo
OO OO oOoOo
0
I
ESEE RN IR RN N
ESEE S RN IR RN N
ESEE RN IR RN N
R SIS RN IR RN N

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Qo =

cocooooo
cocooooo
coocooooo
cococooooo
LY
I
W) D D
))) e

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Qo =

OO OO oOo
OO OO OoOOo
OO OO oOoOo
OO OO oOoOOo
OO OO oOoOo
NN N N N
ESEE N RN RN RN N
N N)

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

O OO O OO0
O OO O OO0
O OO O OO
O OO O OoOOo
ENEEN N N RN RN
ENEEN N N RN RN

W) W) W) W) W))

OO O OOoOOo

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

O OO OOoOOo
O OO OOoOOo
O OO OOoOOo
O OO OOoOo
O OO OOoOOo
O OO OOoOOo

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

O OO OOoOOo
O OO OOoOOo
O OO OOoOOo
O OO OOoOo
O OO OOoOOo
O OO OOoOOo

N)) N N)

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

O OO OOoOOo
O OO OOoOOo
O OO OOoOo
O OO OOoOOo
O OO OOoOo
O OO O0OOoOOo
O OO OOoOOo

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

O OO OOoOOo
O OO OOoOOo
O OO OOoOo
O OO O0OOoOOo
OO O OOoOOo
O OO OOoOOo
O OO OOoOOo

N)) N))

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q =

O OO O0OOoOOo
O OO OOoOOo
O OO OOoOOo
O OO OOoOo
O OO OOoOOo
O OO OOoOOo
O OO OOoOo

O O O oo

—_
o

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q=

O OO OOoOo
O OO OOoOo
O OO OoOOoOo

O O O oo
SRS EEENEETNEREN N
SRS EEENERTN RN N
RS RS EEENERTNEREN N
RS RS EEENEETNERENIEEN]

—_
o

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

Q=

OO OO0 O0o
O OO OO0OO0o
O O OO OO0

O O O oo
O OO OO Oo
~N VO O OO
~N O OO OO

O O OoOoOOo

-
(@)
—_
o

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q*(s, a) is a matrix.
lterations of dynamic programming (y = 0.95):

000 O 0 0 0 O
000 O 0 0 0 O
000 O 0 0 0 O

Q=1900 0 Q=19 0 0 o
000 O 0 95 0 O
|0 0 0 10 | | 0 95 95 1

o
L

S= {1 u,2u,3u, 11, 2L, 3L}, A= {Left, Right, Load, Unload}

Dynamic programming

lterations of dynamic programming (y = 0.95):

[0 0 857 0
0 0 0 0
0 0 0 0
8.57 9.03 857 857
8.57 9.5 9.03 9.03
| 9.08 95 95 10 |

Qs =

S= {1 u,2u,3u, 11, 2L, 31_}, A= {Left, Right, Load, Unload}

Dynamic programming

lterations of DP:

[18.53 17.61 19.51 18.54]
18.53 16.73 17.61 17.61
1761 16.73 16.73 16.73
19.51 20.54 19.51 19.51
19.51 21.62 20.54 20.54
20.54 21.62 21.62 26.73

Qo =

S={1u,2y,3u,11,2.,3.}, A = {Left, Right, Load, Unload}

Dynamic programming

Final Q* and policy:

30.75
30.75
29.21
32.37
32.37
34.07

29.21
27.75
27.75
34.07
35.86
35.86

32.37
29.21
27.75
32.37
34.07
35.86

30.75
29.21
27.75
32.37
34.07
37.75

*

Load
Left
Left

Right

Right

Unload

Value iteration

» Value iteration: successive approximation technique.
» Start with all values set to 0.

» In order to consider one step deeper into the future, i.e., to
compute V; , from V7

Qpi1(s,2) = R(s.)+7 . p(']s.a) max Qs(s,), (4

s'eS

which is known as the dynamic programming update or
Bellman backup.

» Bellman (1957) equation:

Q‘(s,a)=AR(s,a)+v>_p(s'|s, a) max Q (s, d). (5)

s'eS

Value iteration (1)

Initialize Q arbitrarily, e.g., Q(s,a) =0,Vse€ S,ac A
repeat
0+ 0
forallsc S,ac Ado
v+ Q(s,a)
Q(s,a) < R(s,a) + 7> gcsP(S]s,a) maxyca Q8. &)
d < max(é, |v — Q(s, a)|)
end for
until 0 < ¢
Return Q

Value iteration (2)

Value iteration discussion:

» As n — oo, value iteration converges.

» Value iteration has converged when the largest update ¢ in
an iteration is below a certain threshold .

» Exhaustive sweeps are not required for convergence,
provided that in the limit all states are visited infinitely often.

» This can be exploited by backing up the most promising
states first, known as prioritized sweeping.

Solution methods: MDPs

Model based

» Basic: dynamic programming (Bellman, 1957), value
iteration, policy iteration.

» Advanced: prioritized sweeping, function approximators.
Model free, reinforcement learning (Sutton and Barto, 1998)

» Basic: Q-learning, TD()\), SARSA, actor-critic.

» Advanced: generalization in infinite state spaces,
exploration/exploitation issues.

POMDPs

Beyond MDPs

» Real agents cannot directly observe the state.

» Sensors provide partial and noisy information about the
world.

Beyond MDPs

» MDPs have been very successful, but requires to have an
observable Markovian state.

» Many domains this is impossible (or expensive) to obtain:

» Diagnosis (medical, maintenance)

Beyond MDPs

v

MDPs have been very successful, but requires to have an
observable Markovian state.

Many domains this is impossible (or expensive) to obtain:

v

v

Diagnosis (medical, maintenance)
Robot navigation

v

Beyond MDPs

v

MDPs have been very successful, but requires to have an
observable Markovian state.

Many domains this is impossible (or expensive) to obtain:

v

v

Diagnosis (medical, maintenance)
Robot navigation
Tutoring

v

v

Beyond MDPs

» MDPs have been very successful, but requires to have an
observable Markovian state.

» Many domains this is impossible (or expensive) to obtain:

» Diagnosis (medical, maintenance)
» Robot navigation

» Tutoring

» Dialog systems

Beyond MDPs

» MDPs have been very successful, but requires to have an
observable Markovian state.

» Many domains this is impossible (or expensive) to obtain:

» Diagnosis (medical, maintenance)
» Robot navigation

» Tutoring

» Dialog systems

» Vision-based robotics

Beyond MDPs

» MDPs have been very successful, but requires to have an
observable Markovian state.

» Many domains this is impossible (or expensive) to obtain:

» Diagnosis (medical, maintenance)
» Robot navigation

» Tutoring

» Dialog systems

» Vision-based robotics

» Fault recovery

Observation model

» Imperfect sensors.
» Partially observable environment:

» Sensors are noisy.
» Sensors have a limited view.

» p(o|s’, a) is the probability the agent receives observation
o in state s’ after taking action a.

POMDP Agent

environment

agent action a

obs. o state s Q

reward r

POMDP Agent

environment

action a
™

p(s'ls, a)

obs. o state s Q

reward r

POMDP Agent

environment

action a
™
p(ols’, a)
obs. o state s Q

reward r

POMDP Agent

environment

C.

obs. o
reward r

R(s, a) L l

action a

state s Q

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

» Framework for agent planning under uncertainty.

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

» Framework for agent planning under uncertainty.

» Typically assumes discrete sets of states S, actions A and
observations O.

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

» Framework for agent planning under uncertainty.

» Typically assumes discrete sets of states S, actions A and
observations O.

» Transition model p(s’|s, a): models the effect of actions.

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

» Framework for agent planning under uncertainty.

» Typically assumes discrete sets of states S, actions A and
observations O.

» Transition model p(s’|s, a): models the effect of actions.

» Observation model p(o|s’, a): relates observations to
states.

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

>

>

Framework for agent planning under uncertainty.

Typically assumes discrete sets of states S, actions A and
observations O.

Transition model p(s’|s, a): models the effect of actions.

Observation model p(o|s’, a): relates observations to
states.

Task is defined by a reward model R(s, a).

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

>

>

v

Framework for agent planning under uncertainty.

Typically assumes discrete sets of states S, actions A and
observations O.

Transition model p(s’|s, a): models the effect of actions.

Observation model p(o|s’, a): relates observations to
states.

Task is defined by a reward model R(s, a).
A planning horizon h (finite or o).

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

>

>

Framework for agent planning under uncertainty.

Typically assumes discrete sets of states S, actions A and
observations O.

Transition model p(s’|s, a): models the effect of actions.

Observation model p(o|s’, a): relates observations to
states.

Task is defined by a reward model R(s, a).
A planning horizon h (finite or o).
Adiscountrate 0 < v < 1.

POMDPs

Partially observable Markov decision processes (POMDPSs)
(Kaelbling et al., 1998):

>

>

Framework for agent planning under uncertainty.

Typically assumes discrete sets of states S, actions A and
observations O.

Transition model p(s’|s, a): models the effect of actions.

Observation model p(o|s’, a): relates observations to
states.

Task is defined by a reward model R(s, a).
A planning horizon h (finite or o).
Adiscountrate 0 < v < 1.

Goal is to compute plan, or policy =, that maximizes
long-term reward.

Beliefs

Beliefs:
» The agent maintains a belief b(s) of being at state s.

» After action a € A and observation o € O the belief b(s)
can be updated using Bayes’ rule:

b(s') < p(ols) Y p(s'ls, a)b(s)

» The belief vector is a Markov signal for the planning task.

Belief update example

True situation:

! e 4 4

Robot’s belief:

0.5

0
» Observations: door or corridor, 10% noise.

» Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0.5

0 i

» Observations: door or corridor, 10% noise.
» Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0.5

[N -

» Observations: door or corridor, 10% noise.
» Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0.5

- 1
0

» Observations: door or corridor, 10% noise.

» Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0.5

[P

0
» Observations: door or corridor, 10% noise.

» Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0.5

0.25

0

» Observations: door or corridor, 10% noise.

e T O T D E

S I

» Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

MDP-based algorithms

» Exploit belief state, and use the MDP solution as a
heuristic.

» Most likely state (Cassandra et al., 1996):
mmLs(b) = m*(arg maxg b(s)).

» Quor (Littman et al., 1995):
Tawe (D) = argmax, > . b(s)Q*(s, a).

(Parr and Russell, 1995)

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state
MDP:

» Continuous state space A: a simplex in [0, 1]!SI-1.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state
MDP:
» Continuous state space A: a simplex in [0, 1]!SI-1.

» Stochastic Markovian transition model
p(b3|b, a) = p(o|b, a). This is the normalizer of Bayes' rule.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state
MDP:
» Continuous state space A: a simplex in [0, 1]!SI-1.
» Stochastic Markovian transition model
p(b3|b, a) = p(o|b, a). This is the normalizer of Bayes' rule.
» Reward function R(b, a) =) . R(s, a)b(s). This is the
average reward with respect to b(s).

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state
MDP:

» Continuous state space A: a simplex in [0, 1]!SI-1.

» Stochastic Markovian transition model
p(b3|b, a) = p(o|b, a). This is the normalizer of Bayes' rule.

» Reward function R(b, a) =) . R(s, a)b(s). This is the
average reward with respect to b(s).

» The robot fully ‘observes’ the new belief-state bJ after
executing a and observing o.

Solving POMDPs

» A solution to a POMDP is a policy, i.e., a mapping
m: A — Afrom beliefs to actions.

Solving POMDPs

» A solution to a POMDP is a policy, i.e., a mapping
m: A — Afrom beliefs to actions.

» The optimal value V* of a POMDP satisfies the Bellman
optimality equation V* = HV*:

V*(b) = max [R(b,a) + Y p(olb, &) V*(b3)

Solving POMDPs

» A solution to a POMDP is a policy, i.e., a mapping
m: A — Afrom beliefs to actions.

» The optimal value V* of a POMDP satisfies the Bellman
optimality equation V* = HV*:

V*(b) = max [R(b,a) + Y p(olb, &) V*(b3)

» Value iteration repeatedly applies V.1 = HV, starting
from an initial V.

Solving POMDPs

» A solution to a POMDP is a policy, i.e., a mapping
m: A — Afrom beliefs to actions.

» The optimal value V* of a POMDP satisfies the Bellman
optimality equation V* = HV*:

V*(b) = max [R(b,a) + Y p(olb, &) V*(b3)

» Value iteration repeatedly applies V.1 = HV, starting
from an initial V.

» Computing the optimal value function is a hard problem
(PSPACE-complete for finite horizon, undecidable for
infinite horizon).

Example V

R

R(s,a) | a4 a as
s; | 1.00 050 -0.25
S, | 025 075 1.25

(1.0) b (0,1)

PWLC shape of V,

» Like Vp, V), is as well piecewise linear and convex.

» Rewards R(b,a) = b- R(s, a) are linear functions of b.
Note that the value of a point b satisfies:

Voi1(b) = max [b-R(s,a) + 72p(0|b, a)Vn(b3)]

which involves a maximization over (at least) the vectors
R(s, a).

» Intuitively: less uncertainty about the state (low-entropy
beliefs) means better decisions (thus higher value).

Exact value iteration

Value iteration computes a sequence of value function
estimates V4, Vs, ..., V,, using the POMDP backup operator H,
Vn+1 - HVn

4

V3

Vo

.

(1,0) 0,1)

Optimal value functions

The optimal value function of a (finite-horizon) POMDP is
piecewise linear and convex: V(b) = max, b - a.

%

(1,0) 0,1)

Vector pruning

(1,0) by by 0.1)

Linear program for pruning:

variables: Vs € S, b(s); x

maximize: x

subject to:
b-(a—ad)>x,Va €V, o #a
b e A(S)

Optimal POMDP methods

Enumerate and prune:

» Most straightforward: Monahan (1982)’s enumeration
algorithm. Generates a maximum of |A|| V,|I° vectors at
each iteration, hence requires pruning.

» Incremental pruning (zhang and Liu, 1996; Cassandra et al., 1997).
Search for witness points:

» One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

» Relaxed Region, Linear Support (cheng, 198s).

> Witness (cassandra et al., 1994).

Sub-optimal techniques

» Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).
» Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).
» Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).
» Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

» Point-based techniques
(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

etal., 2008).

» Monte Carlo tree search

(Silver and Veness, 2010).

Point-based backup

» For finite horizon V* is piecewise linear and convex, and
for infinite horizons V* can be approximated arbitrary well
by a PWLC value function (Smallwood and Sondik, 1973).

Point-based backup

» For finite horizon V* is piecewise linear and convex, and
for infinite horizons V* can be approximated arbitrary well
by a PWLC value function (Smallwood and Sondik, 1973).

» Given value function V,, and a particular belief point b we
can easily compute the vector af_, of HV,, such that

b k
Qp g =argmaxb-ap, 4,
{agﬁ t

where {an+1}| "l is the (unknown) set of vectors for HV,,.
We will denote thls operation a?_ ; = backup(b).

Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a
limited set of reachable belief points:

1. Let the robot explore the environment.
2. Collect a set B of belief points.
3. Run approximate value iteration on B.

Further reading

» Textbook on reinforcement learning
» R. S. Sutton and A. G. Barto. “Reinforcement Learning: An
Introduction”. MIT Press, 1998.
» Recent book containing chapters on many aspects of
decision-theoretic planning (MDPs, POMDPs,
Dec-POMDPs):

» Marco Wiering and Martijn van Otterlo, editors,
“Reinforcement Learning: State of the Art”, Springer, 2012.

References |

R. Bellman. Dynamic programming. Princeton University Press, 1957.
D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 2nd edition, 2000.

B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision processes. In
International Conference on Machine Learning, 2002.

R. |. Brafman. A heuristic variable grid solution method for POMDPs. 1997.

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains.
1994.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile
robot navigation. In Proc. of International Conference on Intelligent Robots and Systems, 1996.

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proc. of Uncertainty in Atrtificial Intelligence, 1997.

H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis, University of British
Columbia, 1988.

A. W. Drake. Observation of a Markov process through a noisy channel. Sc.D. thesis, Massachusetts Institute of
Technology, 1962.

E. A. Hansen. Finite-memory control of partially observable systems. PhD thesis, University of Massachusetts,
Amherst, 1998a.

E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. of Uncertainty in Artificial Intelligence, 1998b.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains.
Atrtificial Intelligence, 101:99-134, 1998.

H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally
reachable belief spaces. In Robotics: Science and Systems, 2008.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling
up. In International Conference on Machine Learning, 1995.

W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations
Research, 39(1):162-175, 1991.

References Il

G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and algorithms.
Management Science, 28(1), Jan. 1982.

R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic domains. In Proc. Int. Joint
Conf. on Atrtificial Intelligence, 1995.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int.
Joint Conf. on Atrtificial Intelligence, 2003.

L. K. Platzman. A feasible computational approach to infinite-horizon partially-observed Markov decision problems.
Technical Report J-81-2, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1981.
Reprinted in working notes AAAI 1998 Fall Symposium on Planning with POMDPs.

P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural Information Processing
Systems 15. MIT Press, 2003.

P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information Processing
Systems 16. MIT Press, 2004.

M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, 1994.

N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compression. Journal of
Atrtificial Intelligence Research, 23:1-40, 2005.

J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic observation of states. Management
Science, 20(1):1-13, 1973.

G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for POMDPs. In Proc. Int. Joint Conf. on
Atrtificial Intelligence, 2007.

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing
Systems 23, 2010.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov decision processes over a
finite horizon. Operations Research, 21:1071-1088, 1973.

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. of Uncertainty in Atrtificial
Intelligence, 2004.

E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford University, 1971.

References llI

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195-220, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: Solving POMDPs through value based clustering.
2007.

N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and approximations. Technical
Report HKUST-CS96-31, Department of Computer Science, The Hong Kong University of Science and
Technology, 1996.

R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In Proc. Int. Joint Conf.
on Artificial Intelligence, 2001.

Multiagent Models

Example: Predator-Prey Domain

prey

* Predator-Prey domain \ prefator
= 1 agent: predator \\ /
= prey: part of environment A [
= 0on a torus //'
/
L O
* Formalization:
= states (-3,4)
= actions N,W,S,E
= transitions failing to move, prey moves

= rewards reward for capturing

Example: Predator-Prey Domain

. prey
 Predator-Prey domain \ predator

Markov decision process (MDP)

 Markovian state s. (which is observed!) /'

* policy T maps states — actions /

 Value function Q(s,a) O
« Compute via value iteration / policy iteration

Q(s,a)=R(s,a)+y 2. P(s'ls,a)max,.Q(s",a’)

maoves

Partial Observability

* Now: partial observability

= E.g., limited range of sight

« MDP + observations

= explicit observations

= observation probabilities O

* noisy observations
(detection probability)

o="nothing"'

Partial Observability

* Now: partial observability

= E.g., limited range of sight

« MDP + observations

= explicit observations

= observation probabilities

* noisy observations

(detection probability)

0

(_1’1>

Partial Observability

* Now: partial observability

= E.g., limited range of sight

« MDP + observations

= explicit observations

= observation probabilities

* noisy observations

(detection probability)

Can not observe the state
— Need to maintain a belief over states b(s)

- Policy maps beliefs to actions n(b)=a

Partial Observability

Partially Observable MDP (POMDP)

reduction = continuous state MDP
(in which the belief is the state)

Value iteration:;

make use of a-vectors (¢ complete policies)
perform pruning

V(b)

S

«— belief — S,

Multiple Agents

* Now: multiple agents

= fully observable ®
@ A
O
* Formalization:

= states ((31_4)1 (111)1 (_210))
= actions {N,W,S,E}
= joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
= transitions probability of failing to move, prey moves

= rewards reward for capturing jointly

Multiple Agents

* Now: multiple agents

Multiagent MDP [Boutilier 1996]

e Differences with MDP

* nagents
- joint actions a=(a, a, ...,a,)

» transitions and rewards depend on joint actions

. » Solution:
 Treat as normal MDP with 1 '‘puppeteer agent'
» Optimal policy n(s):a
 Every agent executes its part

= transitions probability of failing to move, prey moves
= rewards reward for capturing jointly

Multiple Agents

* Now: multiple agents

Multiagent MDP [Boutilier 1996]

: : Catch: number of joint actions is exponential!
» Differences with MDP (but other than that, conceptually simple.)

* nagents
- joint actions a={(aq, a2 ,d,)

» transitions and rewards depend on joint actions

S © Solution:

 Treat as normal MDP with 1 '‘puppeteer agent'
« Optimal policy n(s):a
 Every agent executes its part

= transitions probability of failing to move, prey moves
= rewards reward for capturing jointly

Multiple Agents &
Partial Observability

* Now both...

= partial observability

= multiple agents O

Multiple Agents &
Partial Observability

* Now both...

= partial observability

= multiple agents O

 Decentralized POMDPs

(Dec-POMDPS) [Bernstein et al. 2002]

* both
= joint actions and
= joint observations

Multiple Agents &
Partial Observability

* Again we can make a reduction...

Multiple Agents &
Partial Observability

Again we can make a reduction...

Dec-POMDPs - MPOMDP e

(multiagent POMDP) @ |A

'puppeteer agent'

= receives joint observations S

= takes joint actions

requires broadcasting observations!

= instantaneous, cost-free, noise-free communication — optimal
[Pynadath and Tambe 2002]

= Without such communication: no easy reduction.

Decentralized POMDPs

Decentralized POMDPs

Now we consider a group of agents that control the
environment jointly.

"

Each agent receives a separate partial observation.
The agents try to optimize a single reward function.

DEC-POMDP
Definition
A decentralized partially observable MDP (DEC-POMDP) is a tuple
(I,S,{Ai}, P,{Q:}, O, R, h) where

>

>
>

lis a finite set of agents indexed 1,..., n.

S is a finite set of states, with distinguished initial state s;.

A; is a finite set of actions available to agent /, and

A = ®jc/A; is the set of joint actions.

P: S x A— ASis a Markovian transition function.

P(s'|s, @) denotes the probability that after taking joint action & in state
s a transition to state s’ occurs.

Q; is a finite set of observations available to agent i, and

Q = ®,e/Q is the set of joint observations.

O: A x S — AS is an observation function.

0(4|4, s') denotes the probability of observing joint observation & given
that joint action & was taken and led to state s'.

R:Ax S — Ris areward function.

R(&, s') denotes the reward obtained after joint action & was taken and
a state transition to s’ occurred.

If the DEC-POMDP has a finite horizon, that horizon is represented by a
positive integer h.

Partially observable stochastic games

Definition
A partially observable stochastic game (POSG) is a tuple
(I, S,{Ai}, P,{Q;}, O,{R;}, h) where
» All the components except the reward function are the
same as in a DEC-POMDP

» Each agent has an individual reward function:
R,' . A,' x S — R.
Ri(aj, s') denotes the reward obtained after action a; was
taken by agent / and a state transition to s’ occurred.

This is the self-interested version of the DEC-POMDP model

Interactive POMDPs

» Interactive POMDPs (I-POMDPSs) extend state space with
behavorial models of other agents (Gmytrasiewicz and
Doshi, 2005).

» Agents maintain beliefs over physical and models of
others.

» Recursive modeling.

» When assuming a finite nesting, beliefs and value
functions can be computed (approximately).

» Finitely nested I-POMDPs can be solved as a set of
POMDPs.

Relationships among the models

M DEC- DEC-POMDP

POMDP MDP § MDp DEC-POMDP-COM
P MTDP

Previous complexity results

Finite Horizon

MDP P-complete (if h < | (Papadimitriou and Tsitsiklis,

|S|) 1987)
POMDP | PSPACE-complete | (Papadimitriou and Tsitsiklis,
(ifh<|8)) 1987)
Infinite Horizon Discounted
MDP P-complete (Papadimitriou and Tsitsiklis,
1987)

POMDP | undecidable (Madani et al., 1999)

DEC-POMDPs complexity

Intuition

» Agents must consider the choices of all others in addition
to the state and action uncertainty present in POMDPs.

» This makes DEC-POMDPs much harder to solve
(NEXP-complete).

» Solvable in nondeterminstic exponential time: Can guess a
solution in exponential time and transform the
DEC-POMDP into an exponentially bigger belief state
MDP.

» NEXP-hardness: Reduction from tiling problem (each
agent must place a tile based on local information and the
result must be consistent).

- P
. LN N
, 2 OR . @ N
/ 3 2/ ’ 1 2, 3
! 0,/ \o. 0,/ \o, ! = K o N
| 2 2 \ 92 02 \
\ N i
@ @@ @& @ @ @

N .

agent 2 state space agent 1 state space

Upper bound for DEC-POMDPs

Theorem
Finite-horizon DEC-POMDPs are in nondeterministic
exponential time.

Proof: The following process shows that a non-deterministic Turing machine can solve
any instance of a DEC-POMDP;, in at most exponential time.

1.

Guess a joint policy and write it down in exponential time. This is possible,
because a joint policy consists of n mappings from observation histories to
actions. Since h < |S|, the number of possible histories is exponentially bounded
by the problem description.

. The DEC-POMDP together with the guessed joint policy can be viewed as an

exponentially bigger POMDP using n-tuples of observations and actions.
In exponential time, convert all the observation sequences into a belief state.

In exponential time, compute transition probabilities and expected rewards for an
exponentially bigger belief state MDP.

. This MDP can be solved in polynomial time, which is exponential in the original

problem description.

Thus, there is an accepting computation path in the non-deterministic machine if and

only if there is a joint policy that can achieve reward K.

Lower bound for DEC-POMDPs

Theorem
(Bernstein et al., 2002) Two-agent finite-horizon DEC-POMDPs
are NEXP-hard.

» Thus provably intractable (unlike POMDP)
» Probably doubly exponential (unlike POMDP)
Proof: By reduction from TILING

n=4

O E N
il | H § | B

8 lnl |n

0 1 2 3
. e 1
a tiling
2
3

Joint observability

Definition

Joint full observability = collective observability. A
DEC-POMDRP is jointly fully observable if the n-tuple of
observations made by all the agents uniquely determine the
current global state.

That is, if O(0|&,s’) > 0 then P(s'|0) = 1.

Definition
A decentralized Markov decision process (DEC-MDP) is a
DEC-POMDP with joint full observability.

A stronger result: The problem is NEXP-hard even when the
state is jointly observed! That is, two-agent finite-horizon
DEC-MDPs are NEXP-hard.

Observability, communication and complexity

Observability || General Communication Free Communication
Full MMDP (P-complete) MMDP (P-complete)
Joint Full DEC-MDP (NEXP-complete) MMDP (P-complete)
Partial DEC-POMDP (NEXP-complete) | MPOMDP (PSPACE-complete)

More complexity results

(Goldman and Zilberstein, 2004)

References |

D. S. Bernstein, R. Givan, N. Imnmerman, and S. Zilberstein. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research, 27(4):819-840, 2002.

P. J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent settings. Journal of Artificial
Intelligence Research, 24:49-79, 2005.

C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Categorization and complexity
analysis. Journal of Artificial Intelligence Research, 22:143—174, 2004.

O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and infinite-horizon partially
observable Markov decision problems. Orlando, Florida, July 1999.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes. Mathematics of Operations
Research, 12(3):441-450, 1987.

Preliminaries & The Goal of Planning

1/100

Notation

T(s,al,a2,s"
R(s,al,a2)

* ADec-POMDP

« (S,A,P;,0,P,,R,h)

= n agents

= S - set of states
A - set of joint actions
P.- transition function

O - set of joint observations o0=(o0,0,...,0,)
P, - observation function P(ola,s’)

R - reward function R(s,a)
h - horizon (finite)

2 /100

Running Example

* 2 generals problem

— R
L 7

3/100

Running Example

S-{s,s.}
A - {(O)bserve, (A)ttack }
O.-{(L)arge, (S)mall }

Transitions
» Both Observe —» no state change
. At least 1 Attack — reset (50% probability s, s.)

Observations
* Probability of correct observation: 0.85
e Eg.,P(<L, L> | s)=0.85%0.85=0.7225

Rewards
1 general attacks = he loses the battle: R(*,<A,0>)=-10
» Both generals Observe —» small cost: R(*,<0,0>) = -1
- Both Attack —» depends on state: R(s,,<A,A>) = -20

R(s,,<A,A>) = +5

Off-line / On-line phases

» off-line planning, on-line execution is decentralized

Planning Phase

T[:<T[1,T[2>

Execution Phase

T(s,al,a2,s")
R(s,al,a2)

=

= (Smart generals make a plan in advance!)

5/100

Policy Domain

* Policies map observation histories (OHs) — actions
T[iiél-—>Ai

Most general, AOHs:

0, ,1, .1 t—1 t
(Cll- o,d,;,...,d; ,O-)

1

But; can restrict to

deterministic policies
— only need OHs:

6/10

No Compact Representation?

. Joint Belief, b(s) (asin MPOMDP) [Pynadath and Tambe 2002]
= compute b(s)using joint actions and observations
* Problem: agents do not know those during execution

- Multiagent belief, b (s,q.) [Hansen et al. 2004]

= belief over (future) policies of other agents
(Need to be able to predict the other agents!)
= form of those other policies?
* most general: T.:0,—d,
= if they use beliefs? — infinite recursion of beliefs!

7 /100

Goal of Planning

* Find an optimal joint policy =*=(x, x,)

* What is optimal?
= Maximal value
= Typically, value is the expected sum of rewards:

h—1

> R(s,a) | n,b"

t=0

V(n)=E

8/100

Goal of Planning
Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe

(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe

(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Coordination vs. Exploitation of
Local Information

* Inherent trade-off
coordination vs. exploitation of local information

= Ignore own observations — 'open loop plan'
= E.g., "ATTACK on 2nd time step”

+ maximally predictable
- low quality
= Ignore coordination -» 'MPOMDP plan'

- E.g., 'individual belief' b,(s)and execute the MPOMDP policy

+ uses local information
- likely to result in mis-coordination

* Optimal policy =" should balance hetween these!

10/100

Value Functions

11/100

Value of a Joint Policy

* Sub-tree
policies:

h

* Given a particular joint policy n=q"
- Just a (complex) Markov Chain [Nair et al. 2003]

V(s,q"")=R(s,a)+ 2. P(s'ls,a) 2., Plola,s')V(s',q™" ")

12 /100

[llustration: Value of a Joint Policy

13/100

[llustration: Value of a Joint Policy

14 /100

[llustration: Value of a Joint Policy

15/100

[llustration: Value of a Joint Policy

16 /100

[llustration: Value of a Joint Policy

Dk AR
=

V(s,q")=R(s,a)+ 2. P(s'ls,a) 2, Plola,s")V(s',q"")

o=(S,L)

17 /100

Brute Force Search

We can compute the value of a joint policy V(m)

So the stupidest algorithm is:
= compute W) forall m
= select a m with maximum value

Number of joint policies is huge!
(doubly exponential in horizon h)

Clearly intractable...

OO\IO)U'I-h(JOI\)Hi

num. joint policies
4

64

16384
1.0737e+09
4.6117e+18
8.5071e+37
2.8948e+76
3.3520e+153

18 /100

Value Functions - V2

* We want to think about optimal value functions...
...unfortunately not as straightforward as (PO)MDPs

* let us rewrite the value as:

V(0,g"")=R(6,a)+), P(0l6,a)V(0',q"" ")

=X (D5 (5,47
R(6,a)=) P(s|6,b°)R(s,a)

P(0l6,a)=)_ P(s|8,b" Z P(s'ls,a)P(ola,s’)

9/100

Value Functions - V2

* We want to think about optimal value functions...
...unfortunately not as straightforward as (PO)MDPs

* let us rewrite the value as:

Note:
this is the joint belief

(can be used at plan-time!)

0/100

Optimal Value Functions - 1

« Consider selecting the best
joint sub-tree policy g*

- We can compute value...

...but cannot select the maximizing g* independently!
21 /100

Optimal Value Functions - 2

* Cannotselect the maximizing g'independently...

— Need to reason over assignment for all AOHs of a
stage t simultaneously!

* Value at stage t V=2 PO'b°, ¢) V(6")

with past joint policy ¢'=(5",...,0"")

* Find mappings r,,r, (from AOHSs - sub-tree policies)
that maximize 2. P((6,,6,)b°,¢)V((6,,6,),(T,(6,),T,(6,)))

A

dependence on dependence on
history future 22 /100

Optimal Value Functions - 3

* Optimal value function has dependence on past
joint policy [Oliehoek 2012]

* Value propagation
= |ast stage t=h-1 Q (" ,6" 8")=R(6",8" (6" "))
= t<h-1

=t

Q*(cpt,ﬁ,f)) (e 6 +ZP O|6 6())Q*(t+1\ t+1,6*t+1)
* Value optimization ¢ =(¢,0)

6>:<t+1:arg maxémzém P(6t+1|b0, CPtH)Q* ((pt+1,_ét+1, 6t+1)

23/100

Optima
QvsV?

* Optimal value f
a1 oJolifa"A(elIfl; — We can interpret it as a 'plan-time’ MDP
- state: ¢

+ Value propagatidi St 2

= last stage t=h Q"(¢',0')=2.5 P(01b",9') Q" (', ",
" t<h-1 Vig)=max; Q"(¢',5)

=t

Q" (¢',0°,0")=R(

(pt+1:((pt,6t>

* Value optimization

6*t+1=arg maxémzétﬂ P(6t+1|b0, cpt+1) Q* (cpt+1’_ét+1, 6t+1)

24 /100

Optima :
QvsV?
» Optimal value f
(X[eJe]ITa"A(e]ITY; — we can interpret it as a 'plan-time' MDP
- state: @
e actions: 6

 Value propagati
= last stage t=h)=2_: P(61b°,9")Q"(¢',6',)

©<hl V(g')=max; Q" (¢',d')
Q"(¢',6,8')=R(

(0]

» Value optimizati Applicability

*t+1 [. .
RNl - constitutes a DP: theoretically nice

* but number of !, 6! just too large...

Optima

QvsV?
« Optimal value f
(X[eJe]ITa"A(e]ITY; — we can interpret it as a 'plan-time' MDP
- state: ¢

« Value propagatidieetelEe

= last stage t=h)=2_: P(61b°,9")Q"(¢',6',)
Recent development: V((Pt):maxg,f Q*((Pt,ét)

substitute ¢* by a sufficient statistic.
[Oliehoek 2013, Dibangoye et al. 2013]

» Value optimizati Applicability

* constitutes a DP: theoretically nice
* but number of !, 6! just too large...

Dynamic Programming for Dec-POMDPs

27 /100

Dynamic Programming - 1

* Generate all policies in a special way:
= from 1 stage-to-go policies Q™
= construct all 2-stages-to-go policies Q™ etc.

28 /100

Dynamic Programming - 1

Exhaustive backup operation

29 /100

Dynamic Programming - 1

Exhaustive backup operation

30 /100

Dynamic Programming - 1

Exhaustive backup operation

31/100

Dynamic Programming - 1

Exhaustive backup operation

32/100

Dynamic Programming - 1

Exhaustive backup operation

s S
YR (2,
/! © \ S L
I o |
- ‘-DG{
' o o !
\ ® !
\ o /

33/100

Dynamic Programming - 1

Exhaustive backup operation

° o\\\ S
o :-G{
® 1

¢ To generate all Q™'
« All actions
» All assignments of g*to observations

34 /100

Dynamic Programming - 2
* (obviously) this scales very poorly...

=1 =1
Q, Q,

® O ® 0O

35/100

Dynamic Programming - 2

* (obviously) this scales very poorly...

=2

Il
o

HON O

RO O

DO O

W “©

O C

MO O

36 /100

Dynamic Programming - 2

* (obviously) this scales very poorly...

Qi
HBOBOHODH DL DL
HABLHODLOHLHOH
ABHBBLHOLABLHDH L DL
Y Y T W P W W W W
LHHBLHLDLH DL L DL
£33 B i 5 B i o B £ B
0855 B in 5 B i B B £ D
£33 B i 5 B i B B £ B
HBO DO DL OO L DL
5855 B i 5 B i B B £ B
HOD OO OH O

=3
Q>

A5 &5 45 L3 £5 L5 £h £ £ £ £ &5,
&5 &5 45 L3 L5 L5 £h £ £ £ £ &5,
£n &5 45 L3 £5 L5 £h £ £ £ 45 45,
&5 &5 45 L5 L5 L5 £h £ b b L2 &5
&5 &5 845 L5 L5 L5 £h £ £ £ £ L5,
3 &% 43 L3 L5 L5 £h L b b £ &5,
A5 &5 43 L3 L5 L5 £h £ b Lo £ &5,
5 &% 45 L3 L5 L5 L5 £ £ L5 L3 45
A5 &% 45 L3 L5 L5 £h £ b £b £ &5,
A5 &% 43 L3 L5 L5 L5 £ £ £ £ 45
&3 &5 45 L3 L5 L5 £ £b

37 /100

Dynamic Programming - 2

* (obviously) this scales very poorly...

Qi
Y Y i Y iV W W W)
D 5 0 0 0 0 0 0 D0

but...

[o Y .. Y .. S .. S . W .. W .. W .. U .. U . G .. W .
. (] (J o [J L [J (] [J (] [J (] () (]) (] () (] () (J () (] [J (]

£p &% 43 L3 L5 L5 L5 £ £ b L3 45
b &5 45 &5 L5 L5 L5 £b

Q"
DAL L LD

@&“&ﬁ-

...-- 2

£h48 4 32768

8485 2.1475e+09
£hd3% 6 9.2234e+18
Ah&% 7 1.7014e+38

d{&é}bef&ﬁ 8 5.7896e+76
&8 & L% Lo L2 L2 L LB

38 /100

Dynamic Programming - 3

« Perhaps not all those @; are useful!
= Perform pruning of 'dominated policies'!

Q=4

1

. Algorithm [Hansen et al. 2004]

Initialize Q1(1), Q2(1)
for tau=2 to h
Ql(tau) = ExhaustiveBackup(Ql(tau-1))

Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2, tau)
end

39/100

Dynamic Programming - 3

* Perhaps not all those Q; are useful!
* Perform pruning of 'dominated policies'!

Q:Zl:Ai
e Algorithm [Hansen et al. 2004
= o (] (i
0 o U
] = = 0B g D (=
] = = 0B g D (=

Note: cannot prune independently!
»usefulness of a g, depends on Q,

»and vice versa
- Iterated elimination of policies

40 /100

Intermezzo: Pruning

* Basic procedure:
= Loop over agents |,
= loop over g,

= check if dominated: LP

= Remember value: v(s,q")
" rewrite as: V(s,q',q;)

Also, easy to compute at each iteration:
V(s,q"")=R(s,a)+ X P(s'ls,a)> P(ola,s")V(s',q""")

41 /100

Intermezzo: Pruning

* Basic procedure:
= Loop over agents |,

= loop over g,

= check if dominated: LP

= Remember value: v(s,q")

= rewrite as:

V(s,q5,.q;)

variables: E;X(CA],),VCALEQ,-T\Q:

maximize: €
subject to:

Prune q:when there is a distribution x

(over other sub-tree policies Qi) that
achieves highervalueV's,q".

42 /100

Perhaps more intuitive:

* Basicy

= Loo _

=
T [e]e] >
= Cf]EE q—hch>
i1
= Reme —
. . - < Prune q:when there is a distribution x

" rewrite as: V(s,q%,q;)

(over other sub-tree policies Qi) that
achieves highervalueV's,q".

A distribution b (S , qzi)

is called 'multiagent belief’

43 /100

Dynamic Programming - 4

* Initialization

=1
Q,

®

©

®

=1
Q>

©

44 /100

Dynamic Programming - 4

* Exhaustive Backups gives

=2

Il
o

oN

45 /100

Dynamic Programming - 4

Hypothetical Pruning
° Pruning agent 1... (not the result of actual pruning)

=2 =2
Q; Q;
(A,

O
@I_

O
Q)
@I_
O
)
@I_
O
©
@I_

46 /100

Dynamic Programming - 4

* Pruning agent 2...

=2

Il
o

e

2

Il
o

Q

47 /100

Dynamic Programming - 4

* Pruning agent 1...

=2

__2
o
Fo
©
N
OO
S @
7)) 7))
) @ N
-
o
Fo
©

e

48 /100

Dynamic Programming - 4

* Etc...

e

_f0) _ o)
(] (O]
3 o “©
E oo
O
[
Q]
N
_f0) _ [
Q] (O]
(0)) (0))
N (< (©)
I
o
[
®©

49 /100

Dynamic Programming - 4

* Etc...
Q1™
In this case: symmetric
— but need not be in general!
S O L S O L S O L S O L
b 0 0 @ b 0 0 @

O
@I_
O
@I_

50/100

Dynamic Programming - 4

Qi

085 5 5 55 B 2 £ B £ 5 D
£ 80 85 £ 53 B £ 53 B £ £ £
HOOLHLDLH LD L L5
£ 85 D5 £ 85 B 0 £ B £ L5
£ 85 85 £ 53 55 £ £ B L0 D
£ 5 5 £ o B i o B £ B
£ 25 B i o5 B i o5 B0 i o5
385 B 0 85 B £ B B £ B
£ 85 85 £ 5 5 £ S5 £ £ 5 2
£ 55 5 0 3 B i o B £ 5
HOD OO OH O

Q,

&% £ &% £ LB LD L2 £ L5 £ L £
&3 £ & £ L2 £ L5 £ L5 £ Lh £
&3 &5 LB L3 £ L3 £ £b £h £ L2 £h
&3 £ &3 B L3 £ L3 £ L5 £b L5 £
5 85 &3 A5 £ £5 £ 43 £ L3 L5 £
&3 £% &3 L3 £b L5 £ 43 £ £b L2 £
&3 £% £ L3 £ L5 £ L3 £ L2 L2 L3
&3 £5 £ 43 L5 £ 43 L5 £b £3 L5 £b
£ L5 85 £ &5 £ £b L3 £ £b 43 L5
&3 &% &5 L5 £b £3 43 L5

51/100

Dynamic Programming - 4

* Exhaustive backups:

=3
Q,

Lo &5 45 L3 L5 L5 £ Lb
b &5 &3 L3 L5 L5 L5 £ £ b L3 L5
5 &5 &5 &5 45 L5 L5 £b £ L5 45 45

Lo &b 45 43 L5 L5 £ L5
Lo &5 45 &5 L5 L5 £ £b

=3
Q>

5 &3 43 L5 L5 L5 £ L5
A5 &5 43 L3 L5 L5 £h £ b Lo £ &5,
5 &% 45 L3 L5 L5 L5 £ £ L5 L3 45

Lo &5 43 L3 £5 L5 £ £b
&3 &5 45 L3 L5 L5 £ £b

52 /100

Dynamic Programming - 4

* Pruning agent 1...

=3
Q,

5 &5 V'3 S $ W ¢
P393 N S N 3 0 3 § SR § ¥ 3 W ¢
P39S N W N 3 S ¥ 3 W 3 9 3 W ¢

£hdd A LhLhLh s
39 3 S $ W 3 W 3 X

=3
Q>

5 &3 43 L5 L5 L5 £ L5
A5 &5 43 L3 L5 L5 £h £ b Lo £ &5,
5 &% 45 L3 L5 L5 L5 £ £ L5 L3 45

Lo &5 43 L3 £5 L5 £ £b
&3 &5 45 L3 L5 L5 £ £b

53/100

Dynamic Programming - 4

* Pruning agent 2...

=3
Q,

5 &5 V'3 S $ W ¢
P393 N S N 3 0 3 § SR § ¥ 3 W ¢
P39S N W N 3 S ¥ 3 W 3 9 3 W ¢

£hdd A LhLhLh s
39 3 S $ W 3 W 3 X

= &

£ &5 &3

=3
Q>

£%
39 3 S $ W 3 W 3 X
'3 S 3 W $

£ &%

54 /100

Dynamic Programming - 4

* Etc...

=3
Q,

£s &3

£ &5 &3

=3
Q>

55/100

* Etc...

£s &3

Dynamic Programming - 4

At the very end:

&5 &5 &3

56 /100

Dynamic Programming - 4

* Etc... At the very end:

» evaluate all the remaining combinations of
policies
* select the best one

V(g =2 b"(s)V(s,q")

£s &3 &5 &5 &3

57 /100

Incremental Policy Generation - 1

 Bottleneck: exhaustive backup
Qi=U, Q"

Qi '=(+), Q"
Q" “°=BackProject (Q; ')

Exhaustive backup operation

58 /100

Incremental Policy Generation - 1

 Bottleneck: exhaustive backup
Qi=U, Q"

Qi '=(+), Q"
Q" “°=BackProject (Q; ')

Exhaustive backup operation

Incremental Policy Generation - 2

* IPG [Amato et al 2009]
= some states may be unreachable (for specific a,0)
— prune only over reachable sub-space

S
— a,o
~ 1
7~
e
-
O
S
> -----------------
\r,a,
q;
—~Q xS—

60 /100

Heuristic Search

61/100

Bottom-up vs. Top-down

* DP constructs bottom-up

* Alternatively try and construct top down
— heuristic search [szer et al. 2005, Oliehoek et al. 2008]

62 /100

Heuristic Search - Intro

* Coreideais the same as DP:
= incrementally construct all (joint) policies
= try to avoid work

 Differences
= different starting point and increments
= use heuristics (rather than pruning) to avoid work

63 /100

The Decentralized Tiger Problem

Two agents in a hallway

States: tiger left (s) or right (s,)
Actions: listen, open left, open right.
Observations: hear left, hear right
= <Listen,Listen>
= 85% prob. of getting right obs.
= e.g. P(<HL,HL> | <Lij,Li>, 5)=0.7225
= otherwise: uniform random
Reward: get the reward, acting jointly is better

Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time' 1 joint policy

65 /100

Heuristic Search - 1

* Incrementally construct all (joint) policies

= 'forward in time' 1 partial joint policy
Py ?
S L S ..~ L
? &3 ? ?
S L S /TN L S L S L

Start with unspecified policy

66 /100

Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time' 1 partial joint policy

67 /100

Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time' 1 partial joint policy

68 /100

Heuristic Search - 1

* Incrementally construct all (joint) policies

= 'forward in time' 1 complete joint policy
(full-length)

69 /100

Heuristic Search - 2

* Creating ALL joint policies — tree structure!

Root node:
unspecified joint policy

70 /100

Heuristic Search - 2

* Creating ALL joint policies — tree structure!

Creating a child node:
assignment actions at ¢=0

71/100

Heuristic Search - 2

* Creating ALL joint policies — tree structure!

Node expansion:
create all children

72 /100

Heuristic Search - 2

* Creating ALL joint policies — tree structure!

73/100

Heuristic Search - 2

* Creating ALL joint policies — tree structure!

Next expansion: more
children!

need to assign action to
4 OHs now: 24 =16

74 /100

Heuristic Search - 2

* Creating ALL joint policies — tree structure!

Last stage: even more!

need to assign action to
8 OHs now: 2A8 = 256 children
(for each node at level 2!)

73/ 100

Heuristic Search - 3

* too big to create completely...

Idea: use heuristics o
» avoid going down oooooooooo + + - 00000
nQn-prOmising branches! =ssssssssssssssssssssssssssssssssannns

* Apply A* - Multiagent A* [szer et al. 2005]

76 /100

Heuristic Search -4

* Use heuristics F(n) = G(n) + H(n)

///\/\/\
0000000000 = =

. \
o G(n) — actual reward of reachlng [eeeeesssszsssssssssses
= a node at depth { SpECiﬁES ([)t (i.e., actions for first t stages)
— can compute V(¢') over stages 0...t-1

* H(n) - should overestimate!
= E.g., pretend that it is an MDP
= compute

H(n ZPS|(P b) MDP()

77 /100

Heuristics - 1

* QPOMDP: Solve 'underlying POMDP'
= corresponds to immediate communication

-

H(qf):Z-éz P (_ét|cpt, bo) IA/POMDP<b6[)

* QBG corresponds to 1-step delayed communication
* Hierarchy of upper bounds [0liehoek et al. 2008]

* A A A A
Q SQkBGSQBGSQPOMDPSQMDP

78 /100

Heuristics - 2

Q-heuristics for horizon=4 Dec-Tiger at t=0

- Y

|-+~ oomop

%= Cypp

O qQ

60 X
50+
<
@
= 40r
O
[u]
&
g 30
]
S 20 *
£
a
10} ©
0]
0
0 t
P(s 19°)

Q-heuristics for horizon=4 Dec-Tiger at t=2

4

307

Qmax = max_ Q(6',a)

-20

-0 U5

|-+ -Cpomor

%= Qypp

¢ aQ

Q-heuristics for horizon=4 Dec-Tiger at t=1

Qmax = max_ Q(6',a)

60

50 S

40 e
30} 4

20} ~s

10/0
0 ¢

-10

-0-Y%c
-+-%oomop
=x=Qyop

L)

0 t
P(s, | 6")

Q-heuristics for horizon=4 Dec-Tiger at t=3

P(s | 0")

—-©—-"8G
-+-omop
- Qupp

DP

¢ a

79 /100

MAA®* Limitations

* Number of children grows doubly exponential with
nodes depth

* For a node last stage, number of children is

o(|4,]"")

» Total number of joint policies o(], |1

- MAA¥* can only solve 1 horizon longer than brute
force search... [Seuken & Zilberstein '08]

80/100

MAA¥ via Bayesian Games

* Each node & a @'
* decision problem

for Stage t t=0 — Jjoint actions
——» Jjoint observations
(ay, as PY joint act.-obs. history
ol o - o
gltzo ao as
a1 +2.75 —4.1 (a1, az)
() ai —0.9 +0.3
. 031 (az,02) (az,02)
9{21 a9 a9 a9 a9
(a O) al —-0.3 +0.6 —0.6 +4.0
DR g | —06 0 420 -1.3 436
(a1,01) al +3.1 +4.4 | —1.9 +1.0
DR a1 —209
(a1,01) n

MAAZ* via Bayesian Games - 2

MAA®* perspective BG perspective

o
FO0D 00w

« node & @ . node < aBG
« joint decision rule 6 . joint BG policy B
maps OHSs to actions maps 'types' to actions

. Expansion: appending all next- « Expansion: enumeration of all
stage decision rules: @"'=(¢",&") joint BG policies @'=(¢*, ")

direct correspondence: 6 & 3

82 /100

MAAZ* via Bayesian Games - 2

MAA¥* persy:
What is the point?

» Generalized MAA® [Oliehoek & Vlassis '07]
»Unified perspective of MAA* and 'BAGA'

approximation [Emery-Montemerlo et al. '04]
Q (»No direct improvements... @

- node & 41 However...
. joint decis * BGs provide abstraction layer
maps OHy * Facilitated two improvements that lead to ctions
state-of-the-art performance [Oliehoek et al. '13]
* Clustering of histories
t+1=(¢(nt Rt
* Incremental expansion p'=(9',BY)

« Expansior eration of all

stage dec

83/100

Lossless Clustering

* Two types (=action-observation histories) in a BG
are probabilistically equivalent iff

P(e—i|6i,a):P<6—i|6i,b> Y
- - - - 02
P (S|6_ . 0.): P (S|6_- , 0. b) 512 (onw,0nL) (onr,0ur) (0nr,0nn) (Our,onr)
b b (omm.om) | 0.261 0.047 0.047 0.016
(0uL,0HR) 0.047 0.016 0.016 0.047
(0uR,0mn1,) 0.047 0.016 0.016 0.047
(OHR,0HR) 0.016 0.047 0.047 0.261
(a) The joint type probabilities.
03
512 (OHL:OHL) (OHL:OHR) (OHR,aOHL) (OHR,aOHR,)
(0nL,0HR) 0.970 0.5 0.5 0.030
(0uR,0HR) 0.5 0.030 0.030 0.001

(b) The induced joint beliefs. Listed is the probability Pr(s;|62,b") of
the tiger being behind the left door.

84 /100

Lossless Clustering

* Two types (=action-observation histories) in a BG
are probabilistically equivalent iff

P(e—i|6i,a>:P<6—i|6i,b> Y
- - - - 02
P (S|6_ . 6)): P (S|6_- , 6) b) 512 (OHL:OHL) (OHL:OHR,) (OHRJOHL) (OHR:OHR)
oond b (omm.om) | 0.261 0.047 0.047 0.016
(OmL,0HR) 0.047 0.016 0.016 0.047
(OH_R,OHL,) 0.047 0.016 0.016 0.047
(a) The joint type probabilities.
0%
512 (ouL,ouL) (onr.onr) (our,ouL) (Onw,Our)
(OHL,OHL) 0.999 0.970 0.970 0.5
(onL,0HR) 0.970 0.5 0.5 0.030
(oug.our) 0.970 0.0 0.9 0.030 |
(0uR,0HR) 0.5 0.030 0.030 0.001

(b) The induced joint beliefs. Listed is the probability Pr(s;|62,b") of
the tiger being behind the left door.

85/100

Incremental Expansion

« Key idea: even though nodes can have many children, only
few are useful.

= j.e., only few will be selected for further expansion
= others will have too low heuristic value

- if we can generate the nodes in increasing heuristic order
— can avoid expansion of redundant nodes

86 /100

Incremental Expansion

Open list
a-7/

87 /100

Incremental Expansion

- ~
/ N\
Select for expansion — \ \
\ /
~N —_ - 7
Open list
a-7/

88 /100

Incremental Expansion

~
e
1) best child has F=6 /

o

\

Open list
b-6

89 /100

Incremental Expansion

1) best child has F=6 \/ l

‘ _ 7 2)reinsert parent as
place holder (with F=6)

Open list
b-6
a-6

90/100

Incremental Expansion

Select for expansion -

Open list
b-6
a-6

91/100

Incremental Expansion

pm T oy
/ ~
a, F=6)

/__

pen list

o0 v QO
[|
NP o

92/100

Incremental Expansion

Open list
d-5.5
a->55
c-4
b-4

93/100

Incremental Expansion

Open list
d-5.5
a->55
c-4
b-4

94 /100

Incremental Expansion: How?

« How do we generate the next-best ” s
child? v o2

* Node « BG, so... @

= find the solutions of the BG
(in decreasing order of value)

= i.e,, 'incremental BG solver'

= Modification of BaGaBaB [oliehoek et al. 2010]
= stop searching when next solution found
= save search tree for next time visited.

95/100

Wrap-up Optimal Solution Methods

96 /100

Other Optimal Methods

* DP with compression of values (LPC) (goularias & chaib-draa 2008]

* MILP (Aras and Dutech 2010]

97 /100

h MILP DP-LPC DP-IPG GMAA — Qpq

State of the Art T
a e O e r BROADCASTCHANNEL, ICE solvable to h = 900

2 0.38 < 0.01 0.09 <0.01 <0.01 <0.01
3 1.83 0.50 56.66 <0.01 <001 <<£0.01
4 34.06 * * <0.01 <0.01 <0.01
5 48.94 <0.01 <001 <<£0.01
DEcC-TI1GER, ICE solvable to h = 6
2 0.69 0.05 0.32 <0.01 <0.01 <0.01
3 23.99 60.73 55.46 <0.01 <0.01 <0.01
L 4 * — 2286.38 0.27 <0.01 0.03
problem primitives 5 B 2103 0.02 0.09
n S| | A (@A FIREFIGHTING (2 agents, 3 houses, 3 firelevels), ICE solvable to h > 1000
2 4.45 8.13 10.34 <0.01 <001 <<£0.01
3 — — 569.27 0.11 0.10 0.07
Dec-TiGER 2 2 3 2 4 . 950.51 100 0.65
BROADCASTCHANNEL 2 4 2 2 GRIDSMALL, ICE solvable to h = 6
.6 D . . < (. < 0.
GRIDSMALL 2 16 5 2 i f: 04 1_1 o8 2 [I}S 8 (1)(1] - 3 81 540201
COOPERATIVE Box PusHING 2 100 4 5 4 77.44 1.77 <0.01 67.39
RECYCLING ROBOTS 2 4 3 9 ReEcycLING RoBOTS, ICE solvable to h = 70
2 1.18 0.05 0.30 <0.01 <0.01 <0.01
HoTeL 1 2 16 3 4 3 * 2.79 1.07 <0.01 <0.01 <0.01
4 2136.16 42.02 <0.01 <0.01 0.02
FIREFIGHTING 2 432 3 2 5 - 1812.15 <001 <001 0.02
HoteL 1, ICE solvable to h = 9
2 1.92 6.14 0.22 <0.01 <0.01 0.03
3 315.16 2913.42 0.54 <0.01 <0.01 1.b1
4 - - 0.73 <0.01 <0.01 3.74
5 1.11 <0.01 <0.01 4.54
9 8.43 0.02 < 0.01 20.26
10 17.40 # #
L ..) . =
—’ memory limit violations 15 283.76
. .. COOPERATIVE BOX PUSHING (Qpoumpp)s ICE solvable to h =4
L 7 POMDP/:
% time limit overruns 2 3.56 15.51 1.07 <0.01 <0.01 <0.01
o CL 3 2534.08 — 6.43 091 002 0.5
heuristic bottleneck Lo 113861 % 807 063

State of the Art

‘ h ‘ Ve | Tnr a4 ("‘:) | TIC(S) | TICE(S) ‘
RECYcCLING ROBOTS

3 10.660125 <0.01[<0.01| <0.01
4 13.380000 713.411<0.01| <0.01
5 16.486000 —1<0.01] <0.01
6| 19.554200 <0.01] <0.01
10| 31.863889 < 0.01] <£0.01
15| 47.248521 <001 <£0.01
20| 62.633136 < 0.01] <0.01
30| 93.402367 0.08 0.05
401124.171598 0.42 0.25
50]154.940828 2.02 1.27
701216.479290 — 28.66
80 — —
BROADCASTCHANNEL
4 3.890000 <0.01]<0.01| <0.01
5 4.790000 1.271<0.01| <0.01
6 5.690000 —1<0.01] <0.01
7 6.590000 <0.01| <0.01
10 9.290000 <0.01] <0.01
25| 22.881523 < 0.01] <0.01
50| 45.501604 < 0.01]| <0.01
100| 90.760423 < 0.0l <0.01
2501 226.500545 0.06 0.07
500 | 452.738119 0.81 0.94
700 | 633.724279 0.52 0.63
800 — —
900 | 814.709393 9.57 11.11
1000 — —

Cases that compress well
* excluding heuristic

computation time (s)

#agents

Scalability w.r.t. #agents

99/100

References

* Most references can be found in

Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo,
Martijn, editors, Reinforcement Learning: State of the Art, Adaptation, Learning,
and Optimization, pp. 471-503, Springer Berlin Heidelberg, Berlin, Germany, 2012.

Other;

= Dibangoye, Amato, Buffet, & Charpillet. Optimally Solving Dec-POMDPs as Continuous-
State MDPs. IJCAI 2013.

= Oliehoek, Spaan, Amato, & Whiteson. Incremental Clustering and Expansion for Faster
Optimal Planning in Decentralized POMDPs. JAIR, 2013.

= Oliehoek. Sufficient Plan-Time Statistics for Decentralized POMDPs. IJCAI 2013.

100 /100

Approximate Approaches

Approximate approaches

Optimal methods are intractable for many
problems and impossible for infinite-horizon

Want to produce the best solution possible with
given resources

Finite-horizon

— JESP

— MBDP-based approaches

Infinite-horizon

— g-optimal DP for infinite-horizon Dec-POMDPs
— Optimizing fixed controllers

Indefinite-horizon

Finite-horizon methods

 Quality bounds are usually not possible,
but these approaches often perform well

* Many based on dynamic programming

Joint equilibrium search for policies (JESP)

(Nair et al., 03)
* Instead of exhaustive search, find best response

* Algorithm:
Start with (full) policy for each agent
while not converged do
fori=1ton
Fix other agent policies
Find a best response policy for agent i

JESP summary

Finds a locally optimal set of policies

Worst case complexity is the same as exhaustive
search, but in practice is much faster

Can also incorporate dynamic programming to
speed up finding best responses
— Fix policies of other agents

— Create a (augmented) POMDP using the fixed
policies of others

— Generate reachable belief states from initial state b,
— Build up policies from last step to first

— At each step, choose subtrees that maximize value at
reachable belief states

Memory bounded dynamic programming (MBDP)

(Seuken and Zilberstein., 07)

Do not keep all policies at each step of dynamic programming
Keep a fixed number for each agent: maxTrees

Select these by using heuristic solutions from initial state
Combines top down and bottom up approaches

Top—down
Heuristics

U

Identify Relevant Belief Points

Bottom—up
DP

MBDP algorithm

start with a one-step policy for each agent
for t=hto 1do
backup each agent's policy
for k=1 to maxTrees do
compute heuristic policy and resulting belief state b
choose best set of trees starting at b

select best set of trees for initial state b,

MBDP summary

Linear complexity in problem horizon
Exponential in the number of observations

Performs well in practice (often with very
small maxTrees)

Can be difficult to choose correct
maxlrees

Extensions to MBDP

 IMBDP: Limit the number of observations used based on
¢ prObab”'ty at eaCh bElIef (Seuken and Zilberstein 07)

* MBDP-OC: compress observations based on the value
p rOd UCEd (Carlin and Zilberstein 08)

e PBIP: heuristic search to find best trees rather than
eXh d USl‘Ive (Dibangoye et al., 09)

* Current state-of-the-art
* PBIP-IPG: extends PBIP by limiting the possible states (amatoetal. os-

AAMAS)
* CBPB: uses constraint satisfaction solver for subtree selection

(Kumar and Zilberstein, 10)

* PBPG: approximate, linear programming method for subtree
SeleCtion (Wu et al, 10) — solves a problem with 3843 states and 11 obs to hor 20

Other finite-horizon approaches

« Sampling methods
— Direct Cross-Entropy policy search (DICE)

(Oliehoek et al., 08)
 Randomized algorithm using combinatorial
optimization
* Applies Cross-Entropy method to Dec-POMDPs
« Scales well wrt number of agents

— Goal-directed sampling (amato and Zilberstein, 09)
 Discussed later

Infinite-horizon approaches

* Alarge enough horizon can be used to
approximate an infinite-horizon solution, but
this is neither efficient nor compact

« g-optimal extension of DP

* Other specialized infinite-horizon solutions
have also been developed:
— Best-First Search (BFS)

— Bou)nded Policy Iteration for Dec-POMDPs (Dec-
BPI

— Nonlinear Programming (NLP)
— Expectation-Maximization (EM)

Infinite-horizon policies: stochastic
controllers

1.0

— Designated initial node Actions: move in direction or stop

Observations: wall left, wall right

— Nodes define actions

1.0

— Transitions based on

observations seen C)

— Inherently infinite-horizon
— With fixed memory,

randomness can help

— One controller for each agent
— Trees for finite-horizon 0.85

Action selection, P(a/q). Q — AA
— Value for node ¢ and state s. Transitions, P(g’/qg,0): Q x O = AQ

V(G.s)=) P@@g)| R(s,d)+y Y P(s'l5,a)> 0@ 1s',d)Y P(G'1G.0)V(G',s")

Inﬁnite hOriZOn DP (Bernstein et al., 09)

Remember we need to define a controller
for each agent

How many nodes do you need and what
should the parameter values be for an
optimal infinite-horizon policy?

This may be infinite!

First e-optimal algorithm for infinite-horizon
Dec-POMDPs: Policy lteration

e-Optimal DP: Policy Iteration

Start with a given controller

Exhaustive backup (for all agents):
generate all next step policies @ @ = Initial controller

Evaluate: determine value of 4 for agent 1
starting at each node at each state
and for each policy for the other
agents

Prune: remove those that always
have lower value (merge as
needed)

Continue with backups and
pruning until error is below ¢

(backup for action 1)

e-Optimal DP: Policy Iteration

 Start with a given controller
» Exhaustive backup (for all agents):

generate all next step policies @8@ = [nitial controller
\ NN\ for agent 1

* Evaluate: determine value of starting at 5, o,
each node at each state and for each
policy for the other agents

* Prune: remove those that always have
lower value (merge as needed)

* Continue with backups and pruning
until error is below €

Key: Prune over not just states, but

possible policies of the other agents!

(backup for action 1)

Memory-bounded solutions

« Optimal approaches may be intractable

« (Can use fixed-size finite-state controllers as policies
for Dec-POMDPs

 How do we set the parameters of these controllers

to maximize their value?

— Deterministic controllers - discrete methods such as branch and
bound and best-first search

— Stochastic controllers - continuous optimization and EM

(D—

(deterministically) choosing an action and transitioning to the next node

BESt-ﬁ rSt Sea rC h (Szer and Charpillet 05)

» Search through space of deterministic
action selection and node transition
parameters

* Produces optimal fixed-size deterministic
controllers

* High search time limits this to very small
controllers (< 3 nodes)

Bounded policy iteration (BPI) @ernsteinetal, os)

* Improve the controller over a series of steps until value
converges

* Alternate between improvement and evaluation

* Improvement

* Use a linear program to determine if a node's parameters can
be changed, while fixing the rest of the controller and other
agent policies

* Improved nodes must have better value for all states and nodes
of the other agents (multiagent belief space)

* Evaluation: Update the value of all nodes in the agent's
controller

e Can solve much larger controller than BFS, but value is low
due to lack of start state info and LP

Nonlinear programming approach

(Amato et al., 07, 09b)

Use a nonlinear program (NLP) to represent an
optimal fixed-size set of controllers for Dec-POMDPs

Consider node value as well as action and transition
parameters as variables

Maximize the value using a known start state
Constraints maintain valid values and probabilities

NLP formulation

Variables: x(g,,a,) = P(a,1q,),y(q,,a;,0,,q;,") = P(q,'l q;,4,,0,),2(q,5) =V (q,s)
Objective: Maximize) b, (s)z(g,.s)

Value Constraints: Vse S,g€Q
2(g,8) = Z[HX(%,%){R(MHVZP(S'|S,ﬁ)20(5|S'ﬁ)zny(qi',a,-,%»Ol-)Z(ZI',S')D
a i s' 0 q i

Probability constraints ensure all probabilities must sum to 1 and be
greater than O

Mealy controllers umoea

Controllers currently used are Moore controllers

Mealy controllers are more powerful than Moore
controllers (can represent higher quality solutions with
the same number of nodes)

Key difference: action depends on node and observation

04,a,

Mealy= o0,,a, 0,,a4

o2:|a1

Mealy controllers continued

* More powerful

* Provides extra structure that algorithms can use

— Can automatically simplify representation based on
informative observations

— Can be done in controller or solution method

« Can be used in place of Moore controllers in all
controller-based algorithms for POMDPs and
DEC-POMDPs (not just NLP)

— Optimal infinite-horizon DP
— Approximate algorithms

04a,

Oa; 05,34

0,,a,

E M (Kumar & Zilberstein, 10)

Planning as inference

Extension of planning as inference for
POMDPS (Toussaint et al., 10)

Discounting represented by probabilistically
stopping

Considers the probability of achieving the
maximum reward (reward only considered at
the end)

Maximizing the likelihood = maximizing the
value of the finite-state controller

EM continued

Represent Dec-POMDP as (infinite) mixture of DBNs for each step T
Reward as probability R(s,a,b)=P(r=1Is, =s,a, =a,b, =b)
Maximize likelihood L’ (r = 1;0) with 8 = P(alq),P(q'l g,0),P(q)

E step: estimate P(s,p,q) (forw.) and V(p,q,s) (back) with fixed 6

M step: maximize new params @ * for latent variables L=S,A,B,P,Q

0(0,6%)=Y Y P(r=1,L,T;0)log P(r =1,L,T;0%)
T L

D@ —)
S O 6L ® @K

D)3

O
& —&

2 agents with controller nodes p and g, actions a and b

Extensions to EM

¢ EM fOF faCtored DEC'POMDPS (Pajarinen and Peltonen, 2011a)

— Consider a factored state space
— Factor the updates and rewards in EM

e EM with structured controllers (pajarinen and peltonen, 2011b)

— Consider controllers that are periodic (transition from one
layer to the next)

— Can generate an initial (deterministic) solution using a
fixed horizon and repeating

— Perform EM with the above initialization

Some infinite-horizon results

e Optimal algorithm can only solve very small problems

* Approximate algorithms are more scalable

A=A
A----x-"
/—_‘ SR
.
/
/,/ “ //X\\
‘ &~ //X’ ~
1’4 P "\\\X____—x
N
gl
// ——NLO
7 - -A- -NLO fixed ||
—x— DEC-BPI
—+ - BFS

6 7 8 9 10 11
controller size

* GridSmall: 16 states, 4 actions, 2 obs
* Policy Iteration: 3.7 with 80 nodes in 821s before out of memory

Indefinite-horizon

* Unclear how many steps are needed until
termination

* Many natural problems terminate after a
goal is reached
— Meeting or catching a target
— Cooperatively completing a task

Indefinite-horizon Dec-POMDPS (amato et al, 092)

e Extends indefinite-horizon POMDPS patek 01 and Hansen 07

* Our assumptions
* Each agent possesses a set of terminal actions
* Negative rewards for non-terminal actions

* Can capture uncertainty about reaching goal
* Many problems can be modeled this way

An optimal solution to this problem can be found
using dynamic programming

Goal-directed Dec-POMDPs

* Relax assumptions, but still have goal

* Problem terminates when
* Asingle agent or set of agents reach local or global goal states
* Any combination of actions and observations is taken or seen

* More problems fall into this class (can terminate without agent
knowledge)

» Solve by sampling trajectories
* Produce only action and observation sequences that lead to goal
* This reduces the number of policies to consider

Can bound the number of samples required to approach optimality

b—a F—¥ 23 = a —~>g

Infinite and indefinite-horizon results

Standard infinite-

horizon benchmarks
Approximate solutions
Different approaches

perform well on
different problems

Algorithm (Size, Time): Value

DecTiger
([S]=2,]Ai| = 3,]0i| = 2)

Peri (10 x 30, 202s): 13.45
PeriEM (7 x 10, 6540s): 9.42
Goal-directed (11, 75s): 5.041

Wireless network
(|S| =64, |A;| =2, |0;] = 6)

EM (3, 63863): —175.40
Peri (15 x 100, 6492s):—181.24
PeriEM (2 x 10, 3557s):—218.90

Mealy NLP (1, 9s): —296.50
Box pushing
(|S| = 100, |A;| =4, |0;] = 5)

Goal-directed (5, 199s): 149.85
Peri (15 x 30, 5675s): 148.65
Mealy NLP (4, 774s): 143.14
PeriEM (4 x 10, 7164s): 106.68
HPI+NLP (10, 65455): 95.63
EM (6, 72015): 43.33

Mars rovers

(S| = 256, |Ai| = 6,]0:| = 8)

NLP (19, 6173s): —1.088
Mealy NLP (4, 29s): —1.49
EM (6, 1425s): —16.30
Recycling robots

(S[=4,]Ai =3,10i|=2)
Mealy NLP (1, Os): 31.93
Peri (6 x 30, 77s): 31.84
PeriEM (6 x 10, 272s): 31.80
EM (2, 13s): 31.50

Meeting in a 2x2 grid

(S| =16,]A;| =5,]10:[=2)
Peri (5 x 30, 58s): 6.89
PeriEM (5 x 10, 6019s): 6.82
EM (8, 5086s): 6.80
Mealy NLP (5, 116s): 6.13
HPI+NLP (7, 16763s): 6.04
NLP (5, 117s): 5.66
Goal-directed (4, 4s): 5.64

Peri (10 x 30, 6088s): 24.13
Goal-directed (6, 956s): 21.48

Mealy NLP (3, 396s): 19.67
PeriEM (3 x 10, 7132s): 18.13
EM (3, 5096s): 17.75
HPI+NLP (4, 1115s): 9.29

Results from (Pajarinen and Peltonen, 2011b)

Summary

» Optimal algorithms for Dec-POMDPs give
performance guarantees, but are often
intractable

— Top down and bottom up methods provide similar
performance
» Approximate Dec-POMDP algorithms are
much more scalable, but (often) lack quality
bounds

— Bounding memory and sampling are dominant
approaches

* Using subclasses can significantly improve
solution scalability (if assumptions hold)

— Discussed later

References

Finite-state controllers based on Mealy machines for centralized and decentralized POMDPs.
Christopher Amato, Blai Bonet and Shlomo Zilberstein. Proceedings of the Twenty-Fourth National
Conference on Artificial Intellgence (AAAI-10), Atlanta, GA, July, 2010.

Optimizing Fixed-size Stochastic Controllers for POMDPs and Decentralized POMDPs. Christopher
Amato, Daniel S. Bernstein and Shlomo Zilberstein. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS) 20009.

Incremental Policy Generation for Finite-Horizon DEC-POMDPs. Christopher Amato, Jilles Steeve
Dibangoye and Shlomo Zilberstein. Proceedings of the Nineteenth International Conference on
Automated Planning and Scheduling (ICAPS-09), Thessaloniki, Greece, September, 2009.

Point-based incremental pruning heuristic for solving finite-horizon DEC-POMDPs. Jilles S.
Dibangoye, Abdel-lllah Mouaddib, and Brahim Chaib-draa. In Proc. of the Joint International
Conference on Autonomous Agents and Multi-Agent Systems , 2009.

Achieving Goals in Decentralized POMDPs. Christopher Amato and Shlomo Zilberstein. Proceedings
of the Eighth International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-09), Budapest, Hungary, May, 2009.

Policy Iteration for Decentralized Control of Markov Decision Processes. Daniel S. Bernstein,
Christopher Amato, Eric A. Hansen and Shlomo Zilberstein. Journal of Al Research (JAIR), vol. 34,
pages 89-132, February, 2009.

References continued

Value-based observation compression for DEC-POMDPs. Alan Carlin and Shlomo
Zilberstein.In Proceedings of the Joint Conference on Autonomous Agents and Multi Agent
Systems, 2008.

Improved memory-bounded dynamic programming for decentralized POMDPs. Sven
gg(l#en and Shlomo Zilberstein. Proceedings of Uncertainty in Artificial Intelligence, July,

Memory-Bounded Dynamic Programming for DEC-POMDPs. Sven Seuken and Shlomo
Zilberstein. Proceedings of the Twentieth International Joint Conference on Artificial
Intelligences (IJCAI-07), January 2007

Anytime Planning for Decentralized POMDPs using Expectation Maximization. Akshat Kumar and
Shlomo Zilberstein. In Proc. of the International Conference on Uncertainty in Artificial Intelligence
(UAI), pages 294-301, 2010.

Point-based Backup for Decentralized POMDPs: Complexity and New Algorithms. Akshat Kumar and Shlomo
Zilberstein. In Proc. of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS),

pages 1315-1322, 2010.
Efficient Planning for Factored Infinite-Horizon DEC-POMDPs. Joni Pajarinen and Jaakko Peltonen.

In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAl), pages
325-331. AAAI Press, July 2011.

Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning. Joni Pajarinen
and Jaakko Peltonen. In Proceedings of the 25th Annual Conference on Neural Information
Processing Systems (NIPS), pages 2636—2644, December 2011.

Probabilistic inference for solving (PO)MDPs. M. Toussaint, S. Harmeling, and A. Storkey. Technical
Report EDIINF-RR-0934, University of Edinburgh, School of Informatics, 2006

References continued

* Bounded policy iteration for decentralized POMDPs. Daniel S. Bernstein, Eric A.
Hansen, and Shlomo Zilberstein. In Proc. Int. Joint Conf. on Artificial Intelligence,

2005.

* An optimal best-first search algorithm for solving infinite horizon DEC-
POMDPs. Daniel Szer and Francois Charpillet. In European Conference on
Machine Learning, 2005.

* Approximate solutions for partially observable stochastic games with common
payoffs. Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and
Sebastian Thrun. In Proceedings of the Joint Conference on Autonomous Agents
and Multi Agent Systems, 2004.

* Taming Decentralized POMDPs: Towards Efficient Policy Computation for Multiagent
Settings. Ranjit Nair, David Pynadath, Makoto Yokoo, Milind Tambe and Stacy Marsella.
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI-03), Acapulco, Mexico, August, 2003.

* Point-Based Policy Generation for Decentralized POMDPs, Feng Wu, Shlomo Zilberstein,
and Xiaoping Chen, Proceedings of the 9th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-10), Page 1307- 1314, Toronto, Canada, May
2010.

Exploiting Problem Structure

Stefan Witwicki
Postdoc at INESC-ID and IST, Portugal
witwicki@inesc-id.pt

Motivation

Dec-POMDP: NEXP-Complete
Benchmark problems like DEC-TIGER appear small

General (optimal) solution methods apparently limited
In scalability

How can we ever hope to solve real world problems?

Exploiting Problem Structure

structural assumptions, representations,
& solution technigues

Overview:
= Graphical Structure in Factored Models
. fDec-POMDP, TI-Dec-MDP, ND-PODMP

= Decoupling and Exploiting Locality of Interaction
= Locality in General fDec-POMDPs

= Abstracting Influences
= TD-POMDPs, Influence-space Search

= Quantifying “Weak Coupling”

Example Domain:
Mars Rovers, Satellites, etc.

Transmit Data
to Earth

Rover i : . Capture Detailed
- Image of Site of A

Interest | -

Capture Course
Image of Region

Visit Site A of Interest | SeTelfiza

Analyze Soil Visit Site B
Return to Base
Process Satellite Imaging Data

—
N A, £

Compile Maps

Plan Path .
| Explore [Visit Site A e
Collect 3D Visit Site B R
Sensory Data Return to Base

-
T —

5, 4

Rover

Team of “weaky-coupled” agents who...
= observe a shared environment from differing perspectives
= perform separate, but interdependent activities

= Optimal joint policy requires coordinating selection and timing of
activities

Conventional Dec-POMDP representation

2-stage Dynamic Bayesian Network

Factored Dec-POMDP

« Graphical structure exposes conditional

Independencies among decision variableg

b aa bt+1 P?'(bt+1)

Slte B Status Unvisited | Visit | Visited 0.95
site B
isit | Unvisited | 0.05

Soil 1.0

current
world state

st

® dust storm °

Transition-Independent Dec-MDP

[Becker Zilberstein Lesse
Transition
Independence

— world state iIs factored into
local state feature subsets

— One agent’s local state is
independent of another’s
actions

tHL| ot b 1) ot ot
Pr(siT|s*,a") = Pr(si™|st, al)

& Goldman, JAIR 2004]

individual

actio
local

observation g0

local
state

=

local
reward

Jointly dependent
reward component

Transition and Observation
Independence

A Dec-POMDP is transition independent if:
Pr (sit|s',a") = Pr (s;'|st, al)
A Dec-POMDP is observation independent if:

O(t—i—l‘ﬂ t+1 HO H—l t+1)

ieEN

Transition-Independent Dec-MDP

[Becker Zilberstein Lesse & Goldman, JAIR 2004]
Transition
Independence
Agent i local actio T

— world state Is factored into apservation (&) /PP .
local state feature subsets local

individual eves]

state

— One agent’s local state is

independent of another’s @
aCthnS - ‘M Jointly dependent

Local full observability

— Each agent observes its local
state directly (but not others’) = state -

10

Transition and Observation
Independence

A Dec-POMDP is transition independent if:
Pr (sit|s',a") = Pr (s;'|st, al)
A Dec-POMDP is observation independent if:

O (o' a!,s*1) = |] O: (o/]al. si*)

ieEN

A Dec-POMDP is reward independent if there are functions f
and R, through R, such that

R(s,a) = f(Ri(s1,a1),Ra(s2,a2),..., Ry (Sn, an))

11

Transition-Independent Dec-MDP

[Becker Zilberstein Lesser & Goldman, JAIR 2004]

« Transition o
I n d ep en d en C e individual
Agent | local actio ::\:;:Iird

— world state is factored into observation (L) /P8 :

local state feature subsets local

state

— One agent's local state is gt-

independent of another’s '

actions

Jointly dependent
reward component

* Local full observability
— Each agent observes its local
state directly (but not others’) = state -
t
» Agents are coupled only 3 | :
through their rewards ' :

. e.g., various activities have &% %
sub-additive or super-
additive value

12

Example Interaction in TI-Dec-MDPs

Rover 1

e

- r’ = T'1(sy,a9) + T'2(s3,a5) T7e

Visit Site A

Return to Base

13

Transition-Independent Dec-MDP

Trgn Easier to Specify
ULt i gle-agent MDPs
mVYelils] - Events (in the form of

local joint transitions) that
trigger reward

—>Qne dependencies
iIndep
actions
e L
—> Olle 0 0 =
0 0 0 0l =
T s |[0[0
A overage sSet Aldg
t B ear proqgrae

oldman, JAIR 2004]

observation g0

local
reward

Jointly dependent
reward component

14

Decoupling

n* = argmax|V ()]
ell

joint decisions

Decoupling

n* = argmax|V ()] = argmax[V (4, ..., ;)]
€Il (T4, TTn)

individual agent
decisions m;

Best Response

Tt = argmaX[V(ﬂl,ﬂz,ﬂ3)]
(T01,7T2,7T3)

= az;tl?rljx [V (7T1, T3, ar%rgnax[V(nl, T2, ”3)])]

argmax|V (mq, o, 73 (111, 72)) | =

2)
&,
= \
> How about
& S 2

7-[1 — e

How about

Ty, =

Decoupled Joint Policy Search

best-response search through the joint policy space
« Hill-climbing: JESP [Nair et al., 2003]
« Exhaustive: GOA [Nair et al., 2003]

« Graph-based methods: LID-JESP [Nair et al., 2005],
SPIDER [Varakantham et al., 2007]

peers’
candidate
policies

*
best response s (i)

computation best respons
policy

Locality of Interaction Among Agents

- Exploit (conditional) independence between agents

sensor networks [Nalr et al 05 AAAI, Varakantham et al. '07 AAMAS]

19

Network-Distributed POMDP

[Nair Varakantham Tambe & Yokoo, AAAI 2005]

 Transition Independence =1\ Agent |

— world state iIs factored into

individual
action

locally-affectable local states i of
and unaffectable shared k:c:l
state
state
t -
Si

* Observation Independence

Jointly dependent
reward component

— Agents’ partial observations ¢ iabie
are independent of others’ state {

local states
« Reward Dependence e
— “neighborhood” rewards shared Sjt
among sub-groups of agents N
o
@)

Agent |
20

Locality of Interaction Among Agents

= Exploit (conditional geiteS et SRR E:

. E.g., sensor netwoi Transition & observation independence
| . Factored reward function

R(s,a)= Y R,(s.a,)

21

Locality of Interaction Among Agents

= eI (elglellilelgEY These problems have
. Transition & observation Independence
« Factored reward function

R(s,a)= Y R,(s.a,)

= E.g., sensor netwo

High Ievel graphical structure captured by

ND-POMDPs have allowed g,
Optimal solutions for
10 agents!

[Varakantham et al., 2009]

Interaction Graphs

What might cause a constraint in the constraint graph?

 Areward dependency (e.g., in a TI-Dec-MDP or ND-
POMDP)

« A transition dependency

23

Locality in General fDec-POMDPs

- | l l 1
I DD I DD
l:l I]EI DEI DD

\7‘ '\7‘3 \f

« Factored Dec-POMDPs

[Oliehoek et al. 2008 AAMAS]

D

=N

=N
=

o=

24

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

25

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

. Why not ?

— dependence propagates!

26

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

. Why not?
— dependence propagates!

F {FL)

=
Q
|_\

FL FL

N
QO
N

FL FL

3(FL

O O Oy GF

FL FL,

!
i

()<

27

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

. Why not?
— dependence propagates!

F {FL)

SZ

FL FL

N
QO
N

(FL

FL FL

3(FL

O O Oy GF

FL FL,

()<

what influences

2
R’ 2

28

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

. Why not?
— dependence propagates!

F {FL)

=
Q
|_\

FL FL

N
QO
N

FL FL

3(FL

O O Oy GF

FL FL,

!
i

()<

29

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

. Why not?
— dependence propagates!

F A

FL FL > FL

N
QO
N

FL FL 3(FL

FL FL, 3L @

!
?

O O Oy GF

30

Locality in General fDec-POMDPs

Can't we use the previous methods
(reduction to DCOP) directly...

. Why not?
— dependence propagates!

F {FL)

FL FL > FL

N
QO
N

FL FL > FL

FL FL, 3L @

!
?

O O D@ =

31

Locality in General fDec-POMDPs

« Factored Dec-POMDPs

[0

S

liehoek et al. 2008 AAMAS]

t

2 4
Solution Methods

. reduction to a type of COP
» but now: one for each stage!

. O is a decision rule
(part of policy for 1 stage t)

— leads to factored form of heuristic search
[Oliehoek 2010 PhD, Oliehoek et al AAMAS 2013]

32

Decoupling Transition-Dependent Problems
TD-POMDP [Witwicki & Durfee ,2010, Witwicki PhD 2011]

* Transition-dependent dp’ individual

interactions captured via Agent | action
shared features...

: local
ri reward

OIt+l
= nonlocal feature N,
— controlled by another agent Sit

— affects subsequent transitions overlapping
local states

of other features in agent j’s local t
state S;

— also affects j's observations

 Agent can compute best
response using a local POMDP
augmented with histories of
the shared state features

33

Decoupling Transition-Dependent Problems
TD-POMDP [Witwicki & Durfee ,2010, Witwicki PhD 2011]

* Transition-dependent k

interactions captured via Agent |
shared features...

= nonlocal feature N,
— controlled by another agent
— affects subsequent transitions shared state

history
of other features in agent j’s local

t
state 5

— also affects j's observations

 Agent can compute best
response using a local POMDP
augmented with histories of
the shared state features

34

Decoupling Transition-Dependent Problems

TD-POMDP [Witwicki & Durfee ,2010, Witwicki PhD 20013]

ey Caveat: No two agents can simultaneously
affect the same state factor
(called nonconcurrent interaction effects)

shared

= nonlocal feature n;

— controlled by another agent Sit
— affects subsequent transitions thardapssirig
lotasrayes

of other features in agent j’s local t
state S;

— also affects j's observations

Agent can compute best
response using a local POMDP
augmented with histories of
the shared state features

35

Decoupling Transition-Dependent Problems

TD-POMDP [Witwicki & Durfee ,2010, Witwicki PhD 20013]

ey Caveat: No two agents can simultaneously
affect the same state factor
(called nonconcurrent interaction effects)

shared

= nonlocal feature n;

— controlled by another agent Sit
— affects subsequent transitions thardapssirig
lotasrayes

of other features in agent j’s local t
state S;

— also affects j's observations

Agent can compute best
response using a local POMDP
augmented with histories of
the shared state features

36

Influence-Based Abstraction

[Witwicki & Durfee, 2010, Oliehoek et al. 2012]
= Factor problem into overlapping local states

= Infer how the local state is affected by other agents’ policies

- Different policies may have different affects
- Each possible affect is an influence

individual
. local
I p action)
/4

Agent i

37

Influence-Based Abstraction

[Witwicki & Durfee, 2010, Oliehoek et al. 2012]
= Factor problem into overlapping local states

= Infer how the local state is affected by other agents’ policies

- Different policies may have different affects
- Each possible affect is an influence

A

Agent i

‘\:5 < Influence DBN
©

38

Influence-Based Abstraction

[Witwicki & Durfee, 2010, Oliehoek et al. 2012]
= Factor problem into overlapping local states

= Infer how the local state is affected by other agents’ policies

- Different policies may have different affects

Equivalent Agent 2 local policy space

- But many policies may yield the same influence!

39

Influence-Space Search

Decoupled policy space search:

peers’
candidate
policies "
Joint Policy best response 2L),
computation best response
policy

Influences abstract policies

...of i’s policy on
j’s decision-
making problem

ﬂuence
pollcy influence n best response
I'(m;) P 77 .
abstraction (L computation T[] (F(T[L))

De

Influences abstract policies

Influence-Space Search

So why not search directly in the influence space?

peers’ candidate
Influences on i

Joint Influence best response ﬂf(ﬂii)

Space 3 computation best response
policy,
possible
outgoing
influences

...of i’s policy on
j’s decision-
making problem

ﬂuence
pohcy influence in best response
['(1;) P 77 .
abstraction (i computation mj (F(nl))

Influence-Space Search

For TI-Dec-MDPs

» Coverage Set Algorithm (CSA) [Becker et al., JAIR
2004]

For EDI-Dec-MDPs (transition-dependent variant of
TI-Dec-MDPs)

» CSA’ [Becker et al., AAMAS 2004]

» Commitment-Driven Distributed Joint Policy Search
[Witwicki & Durfee, MSDM 2009]

For TD-POMDPs

» OIS [Witwicki & Durfee, AAMAS 2010]
For general fDec-POMDPs

» Coming soon!

42

Efficiency Improvements of Influence-Space Search

[Witwicki 2011]
Varying the size of the window of interaction...

relatively flat

O Optimal Influence-space Search (OIS)

orders of magnitude speedup for small interaction windows

[Varakantham et al. 2007]
* Policy-space search algorithm, implemented for 2-
agent problems with task enablement interactions
* Reduces search space via pruning

[] Separable Bilinear Programming

[Mostafa & Lesser 2009, Petrik & Zilberstein 2009]

* centralized approach that exploits structure in a
bilinear programming formulation

* no decoupling of joint policy formulation

(

po
conds

averaged over 25 problems per plott

\ \/;ntime

10

mean

—&—q;

spider

’ * size of
NLATWindow . .
interaction
Runtime window

mean seconds

Neither SPIDER NOR SBP able to exploit constrained influences!

MNLATWindow

43

Context-Specific Influences

Doorway
QQ a :

D Hl:||:-:|I |. JJ '|::|:l.ﬂ| |
l
| -

Goal 2 '-F B || Roboet 2 an

« Context-Specific Multiagent Planning with Factored
MDPs [Guestrin et al. 2002]

* Interaction-Driven Markov Game [Spaan & Melo 2008]

« Distributed POMDP with Coordination Locales
'Varakantham et al. 2009, Velagapudi et al. 20011]

44

Weak Coupling Hypothesis

* Problems wherein agents are "weakly-coupled”
should be...

Easier to solve
« Accommodate more scalable solution techniques

45

Aspects of Weak Coupling

1. Graphical structure

present at state factor |
level 2. Graphical structure present

at agent interaction level

best response
mapping

Characterization of Weakly Coupling
[Witwicki & Durfee 2011]

Dimensions of Weak Coupling

w

—Number of best responses required
dp

—Number of best responses required ||D0m(x1inax) ”
Dom (™)

—Complexity of best response

degree of
Worst-case complexity of planning: coupling

degree of influence ~ agent scope size

rh
O(EXP(IIDom()(Z"“x)Il) -In - (dplll'['{”“xll)@l-l-/n- C]P,) k w

complexity of number of best response overhead of
best response computations partitioning

dp

47

Summary

Assumptions

Factorization of joint problem into local states (LS)

Local full observability (LFO)

Transition and Observation Independence (TOI)
Context-Specific Transition and Observation dependence (CS)
Event-driven Interactions (EDI)

Nonconcurrent Interaction Effects (NIE)

Reward Decomposition (RD)

Locality of Interaction (LI)

Hierarchical structure among agents’ tasks with constraints on ordering (OC-Dec-MDPs) [Beynier & Mouaddib
2005, Marecki & Tambe 2007]

State-dependent action sets [Guo & Lesser 2005]

Resource-constrained interactions [Dolgov & Durfee 2006, Wu & Durfee 2010]

Representations

fDec-POMDP

TI-Dec-MDP (LS, LFO, TOI, EDI, RD), EDI-Dec-MDP/EDI-CR-Dec-MDP (LS, LFO, EDI, RD)
ND-POMDP (LS, TOI, RD, LI

TD-PODMP (LS, NIE, RD, LI

Multiagent Factored MDP (LS, LFO), IDMG (LS, RD, LI), DPCL (LS, RD, LI)

For pointers to more, see [Witwicki & Durfee AAMAS 2011]

48

Summary-2

Solution Paradigms

Decoupled Joint Policy Formulation
» JESP and almost all others covered in this section
COP-based Methods

> LID-JESP, SPIDER, CBDP, CGBG-bhased heuristic
search

Influence Abstraction

» CSA, OIS, Commitment-driven joint policy search,
TREMOR

49

Other Topics

Communication

« Communication can be implicitly
represented in Dec-POMDP model

* Free and instantaneous communication is
equivalent to centralization

 Otherwise, need to reason about what and
when to communicate

n—Mn

Dec-POMDP-COM

- A DEC-POMDP-COM can be defined with the tuple:
M = <Ir S) {Ai}) 'D; R) {Qi}) O/ Z/Cz>
- The first parameters are the same as a Dec-POMDP

- 2, the alphabet of atomic communication messages for each agent
(including a null message)

- C,, the cost of transmitting an atomic message: Cy:Z— R

- R, the reward model integrates this cost for the set of agents sending
message o: R(s,d,0)

- Explicitly models communication
- Same complexity as Dec-POMDP

Algorithms using communication

Analysis of possible communication
models and complexity eynadath et al., 02)

Myopic communication in transition
independent DeC'MDPS (Becker et al., 09)

Reasoning about run-time communication
decisions (Nair et al., 04; Roth et al., 05)

Stochastically delayed communication (spaan

et al., 08)

Learning in Dec-POMDPs

* Hard to solve, even if you know the model,
but there are some good approximate
solution methods

e What if the model is not known?

 There are currently very few RL methods that
can be used (multiagent, partially observable)

Related learning methods

 Model-free reinforcement learning methods using

gradient-based methods to improve the policies (putech et al,
01; Peshkin et al., 00)

* Learning using local signals and modeling the remaining
agents as NOIse (changetal., 04)

* Communication and sample-based planning to generate
best-response policies (anerjee et al., 12) r

References

* Raphen Becker, Alan Carlin, Victor Lesser, and Shlomo Zilberstein. Analyzing myopic
approaches for multi-agent communications. Computational Intelligence}, 25(1): 31
—50, 20009.

* Claudia V. Goldman and Shlomo Zilberstein. Decentralized Control of Cooperative
Systems: Categorization and Complexity Analysis. Journal of Artificial Intelligence
Research Volume 22, pages 143-174, 2004.

e Ranjit Nair, Milind Tambe, Maayan Roth, and Makoto Yokoo. Communication for
improving policy computation in distributed POMDPs. Proc. of Int. Joint Conference
on Autonomous Agents and Multi Agent Systems, 2004.

* David V. Pynadath and Milind Tambe. The Communicative Multiagent Team Decision
Problem: Analyzing Teamwork Theories and Models. Journal of Artificial Intelligence

Research (JAIR), Volume 16, pp. 389-423. 2002.

* Maayan Roth, Reid G. Simmons and Manuela M. Veloso. Reasoning about joint
beliefs for execution-time communication decisions. Proc. of Int. Joint Conference
on Autonomous Agents and Multi Agent Systems, 2005

* Matthijs T. J. Spaan, Frans A. Oliehoek, and Nikos Vlassis. Multiagent planning under

uncertainty with stochastic communication delays. In Int. Conf. on Automated
Planning and Scheduling, pages 338--345, 2008.

References

B. Banerjee, J. Lyle, L. Kraemer, and R. Yellamraju.
Sample bounded distributed reinforcement learning
for decentralized POMDPs. In AAAI, 2012.

Y.-H. Chang, T. Ho, and L. P. Kaelbling. All learning is

local: Multi-agent learning in global reward games. In
NIPS 16, 2004.

A. Dutech, O. Buffet, and F. Charpillet. Multi-agent
systems by incremental gradient reinforcement
learning. In IJCAI, pages 833—838, 2001

L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling.

Learning to cooperate via policy search. In UAI, pages
489-496, 2000.

Applications

Applications

Dec-POMDP very general model

Many real-world problems have uncertainty
and partial information

Communication is often limited in some way

Many Dec-POMDP applications have been
discussed

Recently, these applications have begun to be
tested in the field

Example cooperative multiagent
problems

Multi-agent planning (examples below, reconnaissance, etc.)
Human-robot coordination (combat, industry, etc.)

Sensor networks (e.g. target tracking from multiple
viewpoints)
E-commerce (e.g. decentralized web agents, stock markets)

Sensor network problems

e Sensor networks for

— Target tracking (Nair etal., 05, Kumar and Zilberstein 09-AAMAS)
— Weather phenomena (kumar and Ziberstein 09-1JcAl)

* Two or more cooperating sensors

T1 T2

| i

| | i

-4, -4,

olag o

R— -

t--.3+--h t-.!-sg..’
\

Other possible application domains

* Multi-robot coordination
— Space exploration rovers iverstein etal., 02)
— Helicopter flights (pynadath and Tambe, 02)
— NaVigatiOn (Emery-Montemerlo et al., 05; Spaan and Melo 08)
— Foraging sietal., 10)
— EXpIOration (Matignon et al. 12)
» Load balancing for decentralized queues (cogi etal. 04)

 Networks
— Multi-access broadcast channels (ooi and wornel, 96)
— Network routing (peshkin and savova, 02)
- WireleSS netWOrking (Pajarinen and Peltonen, 11)

« Sensor network management i etal. s)

Persistent Surveillance Mission

Slides courtesy of Josh Redding and the ACL group at MIT
See Ure et al. 2012

Persistent Surveillance Mission

Goal: Team of n limited-fuel agents = ==

coordinate to maintain a persistent | = == =

4 g e,
= == P
== — — % ¢
; Surveillance N\
:;" = 2
— .
. ’
= g R SR £
3
¥) = | “.1
7)
z

presence in the Surveillance and
Communication areas

Mobile targets/obstacles

Uncertainty in agent models
— Rate of fuel consumption
— Probability of sensor failure
— Probability of actuator degradation

Challenge: Maintain presence, but

return to base for refueling and
repairs

Persistent Surveillance Mission

Persistent Search and Track Mission with 3 Quadrotors

— P
L

A ol

\

E |
i)
.-i - - -

g

e

RAVEN testbed, Aerospace Controls Lab

Personal assistant agents (matoetal,1)

* People connected to many others and sources of info

« Use software personal assistant agents to provide
support (Dec-MDP, Shared-MDP)

— Agents collaborate on your behalf to find resources, teams, etc.
— Goal: work more efficiently with others and discover helpful info

; | nasa |
NASA
JSpoc | |
I ________________________
1 |
| Proxy Proxy !
| Agent Agent :
: ‘ .
| NOAA I n
| oXy Proxy | |
n |
|
|
|
|

Mixed-initiative robotics (caineta 1o

 Humans and robots collaborating for search and pursuit

« Determine what tasks robots should do (MMDP, Dec-POMDP)
and what tasks humans should do

« Adjustable autonomy based on preferences and situation

liow Agent Viey

| v
/}, /

veg fW B/
a6l @ o s

lipse SDK

eeeeeeeee

References

D. S. Bernstein, S. Zilberstein, R. Washington, and J. L. Bresina, “Planetary rover control as a
Markov decision process,” in Proceedings of the The Sixth International Symposium on Atrtificial
Intelligence, Robotics and Automation in Space, 2001.

Alan Carlin, Jeanine Ayers, Jeff Rousseau and Nathan Schurr. Agent-based coordination of
human-multirobot teams in complex environments. AAMAS 2010: 1747-1754

D. V. Pynadath and M. Tambe, “The communicative multiagent team decision problem:
Analyzing teamwork theories and models,” Journal of Artificial Intelligence Research, vol. 16,
pp. 389423, 2002.

D.Shi, M.Z.Sauter, X.Sun, L.E.Ray, and J.D.Kralik, “Anextension of bayesian game
approximation to partially observable stochastic games with competition and cooperation,” in
International Conference on Atrtificial Intelligence, 2010.

R. Emery-Montemerlo, G.Gordon, J.Schneider, and S.Thrun, “Game theoretic control for robot
teams,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation,
April 2005, pp. 1163-1169.

M. T. J. Spaan and F. S. Melo, “Interaction-driven Markov games for decentralized multiagent
planning under uncertainty,” in Proceedings of the Seventh International Conference on
Autonomous Agents and Multiagent Systems, 2008, pp. 525-532.

L. Matignon, L. Jeanpierre, and A.-l. Mouaddib, “Coordinated multi- robot exploration under
communication constraints using decentralized Markov decision processes,” in Proceedings of
the Twenty-Sixth AAAI Conference on Atrtificial Intelligence, 2012.

R. Cogill, M. Rotkowitz, B. Van Roy, and S. Lall, “An approximate dynamic programming
approach to decentralized control of stochastic systems,” in Proceedings of the Forty-Second
Allerton Conference on Communication, Control, and Computing, 2004.

References

J. M. Ooi and G. W. Wornell, “Decentralized control of a multiple access broadcast channel:
Performance bounds,” in Proceedings of the 35th Conference on Decision and Control, 1996, pp.
293-298.

L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,” in Proceedings of the
International Joint Conference on Neural Networks, 2002, pp. 1825-1830.

J. Pajarinen and J. Peltonen, “Efficient planning for factored infinite- horizon DEC-POMDPs,” in
Proceedings of the Twenty-Third Inter- national Joint Conference on Artificial Intelligence, July
2011, pp. 325-331.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked distributed POMDPs: a synthesis
of distributed constraint optimization and POMDPs,” in Proceedings of the Twentieth National
Conference on Artificial Intelligence, 2005.

A. Kumar and S. Zilberstein, “Constraint-based dynamic programming for decentralized POMDPs
with structured interactions,” in Proceedings of the Eighth International Conference on
Autonomous Agents and Multiagent Systems, Budapest, Hungary, 2009, pp. 561-568.

A. Kumar and S. Zilberstein, “Event-detecting multi-agent MDPs: Complexity and constant- factor
approximation,” in Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence, 2009, pp. 201-207.

Nazim Kemal Ure, Girish Chowdhary, Joshua Redding, Tuna Toksoz, JonathanHow, Matthew
Vavrina, John Vian, "Experimental demonstration of efficient multi-agent learning and planning
for persistent missions in uncertain environments",Conference on Guidance Navigation and
Control, Minneapolis, MN, August 2012

David V. Pynadath and Milind Tambe. The Communicative Multiagent Team Decision Problem:
Analyzing Teamwork Theories and Models. Journal of Artificial Intelligence Research (JAIR),
Volume 16, pp. 389-423. 2002.

Problem domains and software tools

» An overview of the existing benchmark problems.
» Description of available software.

Benchmark problems

Some benchmark problems:

>

>

>

>

DEC-Tiger (Nair et al., 2003)

BroadcastChannel (Hansen et al., 2004)

Meeting on a grid (Bernstein et al., 2005)

Cooperative Box Pushing (Seuken and Zilberstein, 2007)
Recycling Robots (Amato et al., 2007)

FireFighting (Oliehoek et al., 2008)

Sensor network problems (Nair et al., 2005; Kumar and
Zilberstein, 2009a,b)

Software

» The MADP toolbox aims to provide a software platform for
research in decision-theoretic multiagent planning (Spaan
and Oliehoek, 2008).

» Main features:

» A uniform representation for several popular multiagent
models.

» A parser for a file format for discrete Dec-POMDPs.

» Shared functionality for planning algorithms.

» Implementation of several Dec-POMDP planners.

» Released as free software, with special attention to the
extensibility of the toolbox.

» Provides benchmark problems.

Problem specification

agents: 2

discount: 1

values: reward

states: tiger-left tiger-right
start:

uniform

actions:

listen open-left open-right
listen open-left open-right
observations:

hear-left hear-right
hear-left hear-right

Problem specification (1)

Transitions

T: *

uniform

T: listen listen

identity

Observations

O: »*

uniform

O: listen listen : tiger-left : hear-left hear-left : 0.7225
O: listen listen : tiger-left : hear-left hear-right : 0.1275
[...]

O: listen listen : tiger-right : hear-left hear-left : 0.0225
Rewards

R: listen listen: * : * : % : -2

R: open-left open-left : tiger-left : x : * : =50

[

-
R: open-left listen: tiger-right : x : » : 9

Example program

#include "ProblemDecTiger.h"
#include "JESPExhaustivePlanner.h"
int main ()
{
ProblemDecTiger dectiger;
JESPExhaustivePlanner jesp (3, &dectiger);
jesp.Plan();
out << jesp.GetExpectedReward() << std::endl;
rcout << jesp.GetJointPolicy ()->SoftPrint () << std::endl;
return(0);

Program output

src/examples> ./decTigerJESP

Value computed for DecTiger horizon 3: 5.19081
Policy computed:

JointPolicyPureVector index 120340 depth 999999
Policy for agent 0 (index 55):

Oempty, --> a00:Listen

Oempty, o00:HearLeft, --> a0O:Listen

Oempty, o0l:HearRight, --> a0O:Listen

Oempty, o00:HearLeft, o00:HearLeft, --> a02:0OpenRight
Oempty, o00:HearLeft, oOl:HearRight, --> a00:Listen
Oempty, o0l:HearRight, o00:HearLeft, --> a00:Listen
Oempty, o0Ol:HearRight, o0Ol:HearRight, --> a0l:OpenLeft
Policy for agent 1 (index 55):

Oempty, --> alO:Listen

Oempty, olO:HearLeft, --> al0:Listen

Oempty, oll:HearRight, --> alO:Listen

Oempty, ol0:HearLeft, ol0:HearLeft, --> al2:0OpenRight
Oempty, ol0O:HearLeft, oll:HearRight, --> alO:Listen
Oempty, oll:HearRight, ol0:HearLeft, --> alO:Listen

Oempty, oll:HearRight, oll:HearRight, --> all:OpenlLeft

References |

C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing memory-bounded controllers for decentralized POMDPs.
In Proc. of Uncertainty in Artificial Intelligence, 2007.

D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded policy iteration for decentralized POMDPs. In Proc. Int.
Joint Conf. on Atrtificial Intelligence, 2005.

E. A. Hansen, D. Bernstein, and S. Zilberstein. Dynamic programming for partially observable stochastic games.
2004.

A. Kumar and S. Zilberstein. Constraint-based dynamic programming for decentralized POMDPs with structured
interactions. In Proc. of Int. Conference on Autonomous Agents and Multi Agent Systems, 2009a.

A. Kumar and S. Zilberstein. Event-detecting multi-agent MDPs: Complexity and constant-factor approximation. In
Proc. Int. Joint Conf. on Atrtificial Intelligence, 2009b.

R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella. Taming decentralized POMDPs: Towards efficient
policy computation for multiagent settings. In Proc. Int. Joint Conf. on Atrtificial Intelligence, 2003.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. 2005.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research, 32:289-353, 2008.

S. Seuken and S. Zilberstein. Improved memory-bounded dynamic programming for decentralized POMDPs. In
Proc. of Uncertainty in Artificial Intelligence, July 2007.

M. T. J. Spaan and F. A. Oliehoek. The MultiAgent Decision Process toolbox: software for decision-theoretic
planning in multiagent systems. In Multi-agent Sequential Decision Making in Uncertain Domains, 2008.
Workshop at AAMASO08.

Resources

* Web pages
— UMass Dec-POMDP webpage
* Papers, talks, domains, code, results
e http://rbr.cs.umass.edu/camato/decpomdp/
— Matthijs’s Dec-POMDP page
* Domains, code, results
* http://masplan.org
— USC’s Distributed POMDP page
* Papers, some code and datasets
* http://teamcore.usc.edu/projects/dpomdp/

* Introductory papers

— Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo,
Martijn, editors, Reinforcement Learning: State of the Art, Adaptation,
Learning, and Optimization, pp. 471-503, Springer Berlin Heidelberg, Berlin,
Germany, 2012.

— Sven Seuken and Shlomo Zilberstein. Formal Models and Algorithms for
Decentralized Decision Making Under Uncertainty. Journal of Autonomous
Agents and Multi-Agent Systems (JAAMAS). 17:2, pages 190-250, 2008.

— Prashant Doshi. Decision Making in Complex Multiagent Contexts: A Tale of
Two Frameworks Al Magazine, vol 33, no 4, 2012

